Parabolic double phase obstacle problems

被引:2
作者
Carl, Siegfried [1 ]
Winkert, Patrick [2 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Math, D-06099 Halle, Germany
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Double phase operator; Musielak-Orlicz Sobolev space; Obstacle problem; Parabolic problems; Penalty technique; Sub-supersolution; VARIABLE EXPONENT; FUNCTIONALS; GROWTH; EQUATIONS;
D O I
10.1016/j.nonrwa.2024.104169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence results for the parabolic double phase obstacle problem: Find u is an element of K subset of 0 with u(., 0) = 0 satisfying 0 is an element of u(t) + Au + F(u) + partial derivative I-K(u) in X-0*, where A : X-0 -> X-0* given by Au := - div ( |del u|(P-2)del u + mu(x)|del u|(q-2)del u) for u is an element of X-0, is the double phase operator acting on X-0 = L-p(0, tau; W-0(1, H) (Omega) with W-0(1, H)(Omega) denoting the associated Musielak-Orlicz Sobolev space with generalized homogeneous boundary values. The obstacle is represented by the closed convex set k with the obstacle function psi through K = {v is an element of X-0 : v(x, t) <= psi(x, t) for a.a. (x, t) is an element of = Omega x (0, tau)} and I-K is the indicator function related to K with partial derivative I-K denoting its subdifferential in the sense of convex analysis.
引用
收藏
页数:14
相关论文
共 45 条
[1]   On some new non-linear diffusion models for the image filtering [J].
Alaoui, Mohammed Kbiri ;
Nabil, Tamer ;
Altanji, Mohamed .
APPLICABLE ANALYSIS, 2014, 93 (02) :269-280
[2]  
[Anonymous], 1969, Quelques mthodes de rsolution des problmes aux limites non linaires
[3]   Existence and regularity results for a class of parabolic problems with double phase flux of variable growth [J].
Arora, Rakesh ;
Shmarev, Sergey .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (01)
[4]   Double-phase parabolic equations with variable growth and nonlinear sources [J].
Arora, Rakesh ;
Shmarev, Sergey .
ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) :304-335
[5]   Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves [J].
Bahrouni, Anouar ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
NONLINEARITY, 2019, 32 (07) :2481-2495
[6]   Solitons in several space dimensions: Derrick's problem and infinitely many solutions [J].
Benci, V ;
D'Avenia, P ;
Fortunato, D ;
Pisani, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (04) :297-324
[7]   ON THE TOPOLOGICAL-DEGREE FOR MAPPINGS OF MONOTONE TYPE [J].
BERKOVITS, J ;
MUSTONEN, V .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (12) :1373-1383
[8]  
Berkovits J., 1992, Re. Mat. Serie, V12, P597
[9]   Parabolic equations with p, q-growth [J].
Boegelein, Verena ;
Duzaar, Frank ;
Marcellini, Paolo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (04) :535-563
[10]   Local Continuity and Harnack's Inequality for Double-Phase Parabolic Equations [J].
Buryachenko, Kateryna O. ;
Skrypnik, Igor I. .
POTENTIAL ANALYSIS, 2022, 56 (01) :137-164