Parabolic double phase obstacle problems

被引:1
|
作者
Carl, Siegfried [1 ]
Winkert, Patrick [2 ]
机构
[1] Martin Luther Univ Halle Wittenberg, Inst Math, D-06099 Halle, Germany
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
关键词
Double phase operator; Musielak-Orlicz Sobolev space; Obstacle problem; Parabolic problems; Penalty technique; Sub-supersolution; VARIABLE EXPONENT; FUNCTIONALS; GROWTH; EQUATIONS;
D O I
10.1016/j.nonrwa.2024.104169
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove existence results for the parabolic double phase obstacle problem: Find u is an element of K subset of 0 with u(., 0) = 0 satisfying 0 is an element of u(t) + Au + F(u) + partial derivative I-K(u) in X-0*, where A : X-0 -> X-0* given by Au := - div ( |del u|(P-2)del u + mu(x)|del u|(q-2)del u) for u is an element of X-0, is the double phase operator acting on X-0 = L-p(0, tau; W-0(1, H) (Omega) with W-0(1, H)(Omega) denoting the associated Musielak-Orlicz Sobolev space with generalized homogeneous boundary values. The obstacle is represented by the closed convex set k with the obstacle function psi through K = {v is an element of X-0 : v(x, t) <= psi(x, t) for a.a. (x, t) is an element of = Omega x (0, tau)} and I-K is the indicator function related to K with partial derivative I-K denoting its subdifferential in the sense of convex analysis.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Existence results for double phase obstacle problems with variable exponents
    Benslimane, Omar
    Aberqi, Ahmed
    Bennouna, Jaouad
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) : 875 - 890
  • [2] Irregular obstacle problems for Orlicz double phase
    Baasandorj, Sumiya
    Byun, Sun-Sig
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (01)
  • [3] DOUBLE PHASE OBSTACLE PROBLEMS WITH VARIABLE EXPONENT
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2022, 27 (9-10) : 611 - 645
  • [4] Noncoercive parabolic obstacle problems
    Farroni, Fernando
    Greco, Luigi
    Moscariello, Gioconda
    Zecca, Gabriella
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [5] Convergence analysis for double phase obstacle problems with multivalued convection term
    Zeng, Shengda
    Bai, Yunru
    Gasinski, Leszek
    Winkert, Patrick
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 659 - 672
  • [6] Nonlinear obstacle problems with double phase in the borderline case
    Byun, Sun-Sig
    Cho, Yumi
    Oh, Jehan
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (04) : 651 - 669
  • [7] Lorentz estimates for obstacle parabolic problems
    Baroni, Paolo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 96 : 167 - 188
  • [8] Existence results for double phase obstacle problems with variable exponents
    Omar Benslimane
    Ahmed Aberqi
    Jaouad Bennouna
    Journal of Elliptic and Parabolic Equations, 2021, 7 : 875 - 890
  • [9] Holder regularity for degenerate parabolic obstacle problems
    Boegelein, Verena
    Lukkari, Teemu
    Scheven, Christoph
    ARKIV FOR MATEMATIK, 2017, 55 (01): : 1 - 39
  • [10] Identification of discontinuous parameters in double phase obstacle problems
    Zeng, Shengda
    Bai, Yunru
    Winkert, Patrick
    Yao, Jen-Chih
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01) : 1 - 22