Forecasting interval-valued returns of crude oil: A novel kernel-based approach

被引:2
作者
Yang, Kun [1 ,2 ]
Xu, Xueqing [1 ,3 ]
Wei, Yunjie [1 ,2 ]
Wang, Shouyang [1 ,2 ,4 ]
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Econ & Management, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[4] ShanghaiTech Univ, Sch Entrepreneurship & Management, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
crude oil; forecasting; interval-valued time series; kernel function; neural networks; HYBRID METHOD; PRICE; PREDICTION;
D O I
10.1002/for.3167
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper proposes a novel kernel-based generalized random interval multilayer perceptron (KG-iMLP) method for predicting high-volatility interval-valued returns of crude oil. The KG-iMLP model is constructed by utilizing the D(K )distance based on a kernel function, which outperforms the conventional Euclidean distance. Additionally, the optimal kernel function is estimated using the variance-covariance matrix of the prediction error, contributing to a better understanding of the overall characteristics of interval-valued data. The introduction of the kernel function renders the algorithms used for estimating machine learning parameters ineffective. Therefore, this paper further proposes a backward D-K distance of accumulative error propagation algorithm to estimate both the kernel function and model parameters, which provides a feasible approach for utilizing kernel function in interval neural networks. In the empirical analysis of weekly and daily returns of WTI crude oil, the superior predictive performance of the proposed method is demonstrated, enabling stable and accurate predictions for both point values and interval values. The model exhibits consistent outstanding performance across different network structures, showcasing the potential of KG-iMLP for crude oil price forecasting.
引用
收藏
页码:2937 / 2953
页数:17
相关论文
共 43 条
  • [1] USING BELIEF NETWORKS TO FORECAST OIL PRICES
    ABRAMSON, B
    FINIZZA, A
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1991, 7 (03) : 299 - 315
  • [2] Examining the dynamic effect of COVID-19 pandemic on dwindling oil prices using structural vector autoregressive model
    Adedeji, Abdulkabir N.
    Ahmed, Funmilola F.
    Adam, Shehu U.
    [J]. ENERGY, 2021, 230
  • [3] Akarca A. T., 1997, INT ADV ECON RES, V3, P217, DOI [10.1007/BF02294942, DOI 10.1007/BF02294942]
  • [4] On the predictability of crude oil market: A hybrid multiscale wavelet approach
    Bekiros, Stelios
    Arreola Hernandez, Jose
    Salah Uddin, Gazi
    Muzaffar, Ahmed Taneem
    [J]. JOURNAL OF FORECASTING, 2020, 39 (04) : 599 - 614
  • [5] Forecasting crude oil price: Does exist an optimal econometric model?
    de Albuquerquemello, Vinicius Phillipe
    de Medeiros, Rennan Kertlly
    Besarria, Cassio da Nobrega
    Maia, Sinezio Fernandes
    [J]. ENERGY, 2018, 155 : 578 - 591
  • [6] Forecasting crude oil real prices with averaging time-varying VAR models
    Drachal, Krzysztof
    [J]. RESOURCES POLICY, 2021, 74 (74)
  • [7] Detecting method for crude oil price fluctuation mechanism under different periodic time series
    Gao, Xiangyun
    Fang, Wei
    An, Feng
    Wang, Yue
    [J]. APPLIED ENERGY, 2017, 192 : 201 - 212
  • [8] Modeling and forecasting the oil volatility index
    Goncalves Mazzeu, Joao H.
    Veiga, Helena
    Mariti, Massimo B.
    [J]. JOURNAL OF FORECASTING, 2019, 38 (08) : 773 - 787
  • [9] Convolution-based filtering and forecasting: An application to WTI crude oil prices
    Gourieroux, Christian
    Jasiak, Joann
    Tong, Michelle
    [J]. JOURNAL OF FORECASTING, 2021, 40 (07) : 1230 - 1244
  • [10] Han A., 2017, AUTOREGRESSIVE CONDI