Wear resistance and antibacterial properties of 3D-printed Ti6Al4V alloy after gas nitriding

被引:7
|
作者
Matijosius, Tadas [1 ,2 ]
Pohrelyuk, Iryna [3 ]
Lavrys, Serhii [3 ]
Staisiunas, Laurynas
Selskiene, Ausra [2 ]
Sticinskait, Aiste [4 ]
Rageliene, Lina [4 ]
Smailys, Alfredas [5 ]
Andrius, Albinas
Padgurskas, Juozas [1 ]
机构
[1] Vytautas Magnus Univ VMU, Fac Engn, Studentu 15 Akad, LT-53362 Kaunas, Lithuania
[2] State Res Inst Ctr Phys Sci & Technol, Dept Chem Engn & Technol, Sauletekio 3, LT-10257 Vilnius, Lithuania
[3] Natl Acad Sci Ukraine, Dept Mat Sci & Basics Surface Engn, Karpenko Physicomech Inst, Naukova Str 5, UA-79060 Lvov, Ukraine
[4] Vytautas Magnus Univ VMU, Fac Nat Sci, Univ 10 Akad, LT-53362 Kaunas, Lithuania
[5] Lithuanian Univ Hlth Sci, Dept Orthopaed & Traumatol, A Mickeviciaus Str 9, LT-44307 Kaunas, Lithuania
关键词
3D-printing; Titanium nitriding; Wear; Antibacterial activity; CORROSION BEHAVIOR; TITANIUM-ALLOYS; TI ALLOY; PERFORMANCE; INFECTION; IMPLANTS;
D O I
10.1016/j.triboint.2024.109839
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This research focused on tribological and antibacterial studies of 3D-printed Ti6Al4V alloys based on the selective laser melting method vs conventional technology after gas nitriding for biomedical applications. Gas nitriding reduced friction and wear in the following order: 3D-printed AM Ti6Al4V > wrought CM Ti6Al4V > CP-Ti. The best tribological performance was demonstrated on nitrided Ti6Al4V alloy using 3D printing. The antibacterial activity of the samples was estimated for the Gram-positive Staphylococcus aureus and the Gram-negative bacteria Escherichia coli. AM Ti6Al4V showed a positive antibacterial effect of nitriding against S. aureus bacteria by up to 30 %. Gas nitriding of 3D-printed Ti6Al4V alloys suggests an effective strategy to improve the antibacterial activity and mechanical resistance of biomedical implants.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Study on Wear and Corrosion Properties of Ti6Al4V Alloy by Laser Gas Nitriding
    Zhang Chunhua
    Tang Liwen
    Hu Fang
    Zhang Song
    Man Hauchung
    MATERIALS AND MANUFACTURING, PTS 1 AND 2, 2011, 299-300 : 188 - +
  • [2] Nitriding Behavior of Ti6Al4V Alloy in Gas Atmosphere
    Siyahjani, Farid
    Atar, Erdem
    TMS 2014 SUPPLEMENTAL PROCEEDINGS, 2014, : 197 - 203
  • [3] Solar gas nitriding of Ti6Al4V alloy
    Rodriguez, Gloria P.
    Herranz, Gemma
    Romero, Ana
    APPLIED SURFACE SCIENCE, 2013, 283 : 445 - 452
  • [4] Influence of simultaneous addition of carbon nanotubes and calcium phosphate on wear resistance of 3D-printed Ti6Al4V
    Stenberg, Kevin
    Dittrick, Stanley
    Bose, Susmita
    Bandyopadhyay, Amit
    JOURNAL OF MATERIALS RESEARCH, 2018, 33 (14) : 2077 - 2086
  • [5] High temperature gas nitriding of Ti6Al4V to improve wear surface properties
    King, E
    González, BJF
    González, JJD
    Fernández, JR
    REVISTA DE METALURGIA, 2000, 36 (06) : 403 - 409
  • [6] Wear properties of nonhydrogenated, hydrogenated, and dehydrogenated Ti6Al4V alloy
    Yuan, Bao-Guo
    Yu, Hai-Ping
    Li, Chun-Feng
    Sun, Dong-Li
    RARE METALS, 2018, 37 (07) : 574 - 578
  • [7] Effects of Duplex Nitriding and TiN Coating Treatment on Wear Resistance, Corrosion Resistance and Biocompatibility of Ti6Al4V Alloy
    Kao, W. H.
    Su, Y. L.
    Hsieh, Y. T.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (08) : 3686 - 3697
  • [8] Research on the Dynamic Compressive Deformation Behavior of 3D-Printed Ti6Al4V
    Pu, Bo
    Li, Wenbin
    Zhang, Qing
    Zheng, Yu
    Wang, Xiaoming
    METALS, 2021, 11 (08)
  • [9] 3D-printed Ti6Al4V femoral component of knee: Improvements in wear and biological properties by AIP TiN and TiCrN coating
    Ni, JunJie
    Liu, Fan
    Yang, Gaolin
    Lee, Gun-Hwan
    Chung, Sung-Min
    Lee, In-Seop
    Chen, Cen
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 2322 - 2332
  • [10] Enhancement of Wear and Corrosion Resistance of Ti6Al4V Alloy through Hollow Cathode Discharge-Assisted Plasma Nitriding
    Shen, Hongyu
    Wang, Liang
    MATERIALS, 2024, 17 (17)