Multivalued Variational Inequalities with Generalized Fractional Φ-Laplacians

被引:0
作者
Le, Vy Khoi [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
variational inequality; pseudomonotone mapping; multivalued mapping; fractional Laplacian; fractional Musielak-Orlicz space; fractional Musielak-Orlicz-Sobolev space;
D O I
10.3390/fractalfract8060324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we examine variational inequalities of the form < A(u),v-u >+< F(u),v-u >>= 0,for all v is an element of Ku is an element of K,, where A is a generalized fractional Phi-Laplace operator, K is a closed convex set in a fractional Musielak-Orlicz-Sobolev space, and F is a multivalued integral operator. We consider a functional analytic framework for the above problem, including conditions on the multivalued lower order term F such that the problem can be properly formulated in a fractional Musielak-Orlicz-Sobolev space, and the involved mappings have certain useful monotonicity-continuity properties. Furthermore, we investigate the existence of solutions contingent upon certain coercivity conditions.
引用
收藏
页数:27
相关论文
共 32 条
[1]  
Adams Robert A., 2003, Pure and Applied Mathematics (Amsterdam), V140
[2]   On the limit as s → 1- of possibly non-separable fractional Orlicz-Sobolev spaces [J].
Alberico, Angela ;
Cianchi, Andrea ;
Pick, Lubos ;
Slavikova, Lenka .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (04) :879-899
[3]  
Alberico A, 2020, J FOURIER ANAL APPL, V26, DOI 10.1007/s00041-020-09785-z
[4]   On a class of nonlocal problems in new fractional Musielak-Sobolev spaces [J].
Azroul, E. ;
Benkirane, A. ;
Shimi, M. ;
Srati, M. .
APPLICABLE ANALYSIS, 2022, 101 (06) :1933-1952
[5]   Embedding and extension results in fractional Musielak-Sobolev spaces [J].
Azroul, Elhoussine ;
Benkirane, Abdelmoujib ;
Shimi, Mohammed ;
Srati, Mohammed .
APPLICABLE ANALYSIS, 2023, 102 (01) :195-219
[6]   BASIC RESULTS OF FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS [J].
Bahrouni, Sabri ;
Ounaies, Hichem ;
Tavares, Leandro S. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (02) :681-695
[7]  
BROWDER FE, 1972, J FUNCT ANAL, V11, P251
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]   Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian [J].
Caffarelli, Luis A. ;
Salsa, Sandro ;
Silvestre, Luis .
INVENTIONES MATHEMATICAE, 2008, 171 (02) :425-461
[10]  
Carl S., 2021, Multi Valued Variational Inequalities and Inclusions