Multivalued Variational Inequalities with Generalized Fractional Φ-Laplacians

被引:0
作者
Le, Vy Khoi [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Math & Stat, Rolla, MO 65409 USA
关键词
variational inequality; pseudomonotone mapping; multivalued mapping; fractional Laplacian; fractional Musielak-Orlicz space; fractional Musielak-Orlicz-Sobolev space;
D O I
10.3390/fractalfract8060324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we examine variational inequalities of the form < A(u),v-u >+< F(u),v-u >>= 0,for all v is an element of Ku is an element of K,, where A is a generalized fractional Phi-Laplace operator, K is a closed convex set in a fractional Musielak-Orlicz-Sobolev space, and F is a multivalued integral operator. We consider a functional analytic framework for the above problem, including conditions on the multivalued lower order term F such that the problem can be properly formulated in a fractional Musielak-Orlicz-Sobolev space, and the involved mappings have certain useful monotonicity-continuity properties. Furthermore, we investigate the existence of solutions contingent upon certain coercivity conditions.
引用
收藏
页数:27
相关论文
共 32 条
  • [1] Adams R.A., 2003, Pure and Applied Mathematics
  • [2] On the limit as s → 1- of possibly non-separable fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (04) : 879 - 899
  • [3] Alberico A, 2020, J FOURIER ANAL APPL, V26, DOI 10.1007/s00041-020-09785-z
  • [4] [Anonymous], 1961, Convex functions and orlicz spaces
  • [5] On a class of nonlocal problems in new fractional Musielak-Sobolev spaces
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    Srati, M.
    [J]. APPLICABLE ANALYSIS, 2022, 101 (06) : 1933 - 1952
  • [6] Embedding and extension results in fractional Musielak-Sobolev spaces
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Shimi, Mohammed
    Srati, Mohammed
    [J]. APPLICABLE ANALYSIS, 2023, 102 (01) : 195 - 219
  • [7] BASIC RESULTS OF FRACTIONAL ORLICZ-SOBOLEV SPACE AND APPLICATIONS TO NON-LOCAL PROBLEMS
    Bahrouni, Sabri
    Ounaies, Hichem
    Tavares, Leandro S.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (02) : 681 - 695
  • [8] Browder FE., 1972, J. Funct. Anal, V11, P251, DOI [10.1016/0022-1236(72)90070-5, DOI 10.1016/0022-1236(72)90070-5]
  • [9] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [10] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Caffarelli, Luis A.
    Salsa, Sandro
    Silvestre, Luis
    [J]. INVENTIONES MATHEMATICAE, 2008, 171 (02) : 425 - 461