The Ariki-Koike algebras and Rogers-Ramanujan type partitions

被引:1
作者
Chern, Shane [1 ]
Li, Zhitai [2 ]
Stanton, Dennis [3 ]
Xue, Ting [4 ]
Yee, Ae Ja [2 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 4R2, Canada
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[3] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[4] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
关键词
Generalized Rogers-Ramanujan identities; Multipartitions; Partition residue statistics; Blocks of cyclotomic Hecke algebras; Cyclotomic rational double affine Hecke algebras; HECKE ALGEBRA; NUMBER; IDENTITIES; PARITY; PROOF;
D O I
10.1007/s10801-024-01340-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ariki and Mathas (Math Z 233(3):601-623, 2000) showed that the simple modules of the Ariki-Koike algebras H C , v ; Q 1 , & mldr; , Q m ( G ( m , 1 , n ) ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_{\mathbb {C},v;Q_1,\ldots , Q_m}\big (G(m, 1, n)\big )$$\end{document} (when the parameters are roots of unity and v not equal 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \ne 1$$\end{document} ) are labeled by the so-called Kleshchev multipartitions. This together with Ariki's categorification theorem enabled Ariki and Mathas to obtain the generating function for the number of Kleshchev multipartitions by making use of the Weyl-Kac character formula. In this paper, we revisit their generating function relation for the v = - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v=-1$$\end{document} case. In particular, this v = - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v=-1$$\end{document} scenario is of special interest as the corresponding Kleshchev multipartitions are closely tied with generalized Rogers-Ramanujan type partitions when Q 1 = & ctdot; = Q a = - 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_1=\cdots =Q_a=-1$$\end{document} and Q a + 1 = & ctdot; = Q m = 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{a+1}=\cdots =Q_m =1$$\end{document} . Based on this connection, we provide an analytic proof of the result of Ariki and Mathas for the above choice of parameters. Our second objective is to investigate simple modules of the Ariki-Koike algebra in a fixed block, which are, as widely known, labeled by the Kleshchev multiparitions with a fixed partition residue statistic. This partition statistic is also studied in the works of Berkovich, Garvan, and Uncu. Employing their results, we provide two bivariate generating function identities for the m = 2 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=2$$\end{document} scenario.
引用
收藏
页码:491 / 540
页数:50
相关论文
共 41 条
[1]  
Andrews G.E., 1976, THEORY PARTITIONS
[2]   AN ANALYTIC PROOF OF ROGERS-RAMANUJAN-GORDON IDENTITIES [J].
ANDREWS, GE .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (04) :844-&
[3]   DYSONS CRANK OF A PARTITION [J].
ANDREWS, GE ;
GARVAN, FG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 18 (02) :167-171
[4]   Parity in partition identities [J].
Andrews, George E. .
RAMANUJAN JOURNAL, 2010, 23 (1-3) :45-90
[5]   On the decomposition numbers of the Hecke algebra of G(m,1,n) [J].
Ariki, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (04) :789-808
[6]   The number of simple modules of the Hecke algebras of type G (r, 1, n) [J].
Ariki, S ;
Mathas, A .
MATHEMATISCHE ZEITSCHRIFT, 2000, 233 (03) :601-623
[7]   A HECKE ALGEBRA OF (Z/RZ)/S(N) AND CONSTRUCTION OF ITS IRREDUCIBLE REPRESENTATIONS [J].
ARIKI, S ;
KOIKE, K .
ADVANCES IN MATHEMATICS, 1994, 106 (02) :216-243
[8]   On the tensor product of two basic representations of Uv((s)over-caple) [J].
Ariki, Susumu ;
Kreiman, Victor ;
Tsuchioka, Shunsuke .
ADVANCES IN MATHEMATICS, 2008, 218 (01) :28-86
[9]   On the Andrews-Stanley refinement of Ramanujan's partition congruence modulo 5 and generalizations [J].
Berkovich, A ;
Garvan, FG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (02) :703-726
[10]   Positivity preserving transformations for q-binomial coefficients [J].
Berkovich, A ;
Warnaar, SO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (06) :2291-2351