Assessing Viscosity in Sustainable Deep Eutectic Solvents and Cosolvent Mixtures: An Artificial Neural Network-Based Molecular Approach

被引:13
作者
de Alencar, Luan Vittor Tavares Duarte [1 ,2 ]
Rodriguez-Reartes, Sabrina Belen [1 ,3 ,4 ]
Tavares, Frederico Wanderley [2 ,5 ]
Llovell, Felix [1 ]
机构
[1] Univ Rovira & Virgili, Dept Chem Engn, ETSEQ, Tarragona 43007, Spain
[2] Univ Fed Rio De Janeiro UFRJ, Programa Engn Quim PEQ COPPE, BR-21949900 Rio De Janeiro, RJ, Brazil
[3] Univ Nacl Sur UNS, Dept Ingn Quim, RA-8000 Bahia Blanca, Argentina
[4] UNS, CONICET, Planta Piloto Ingn Quim PLAPIQUI, RA-8000 Bahia Blanca, Argentina
[5] Univ Fed Rio De Janeiro UFRJ, Engn Proc Quim & Bioquim, Escola Quim EPQB, BR-21949900 Rio De Janeiro, RJ, Brazil
关键词
deep eutectic solvents; viscosity; machinelearning; artificial neural network; COSMO-SAC; CHOLINE CHLORIDE; PHYSICOCHEMICAL PROPERTIES; THERMOPHYSICAL PROPERTIES; AQUEOUS MIXTURES; IONIC LIQUIDS; PREDICTION; INTELLIGENCE; DENSITIES; CONDUCTIVITY; VALIDATION;
D O I
10.1021/acssuschemeng.3c07219
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Deep eutectic solvents (DESs) are gaining recognition as environmentally friendly solvent alternatives for diverse chemical processes. Yet, designing DESs tailored to specific applications is a resource-intensive task, which requires an accurate estimation of their physicochemical properties. Among them, viscosity is crucial, as it often dictates a DES's suitability as a solvent. In this study, an artificial neural network (ANN) is introduced to accurately describe the viscosity of DESs and their mixtures with cosolvents. The ANN utilizes molecular parameters derived from sigma-profiles, computed using the conductor-like screening model for the real solvent segment activity coefficient (COSMO-SAC). The data set comprises 1891 experimental viscosity measurements for 48 DESs based on choline chloride, encompassing 279 different compositions, along with 1618 data points of DES mixtures with cosolvents as water, methanol, isopropanol, and dimethyl sulfoxide, covering a wide range of viscosity measurements from 0.3862 to 4722 mPa s. The optimal ANN structure for describing the logarithmic viscosity of DESs is configured as 9-19-16-1, achieving an overall average absolute relative deviation of 1.6031%. More importantly, the ANN shows a remarkable extrapolation capacity, as it is capable of predicting the viscosity of systems including solvents (ethanol) and hydrogen bond donors (2,3-butanediol) not considered in the training. The ANN model also demonstrates an extensive applicability domain, covering 94.17% of the entire database. These achievements represent a significant step forward in developing robust, open source, and highly accurate models for DESs using molecular descriptors.
引用
收藏
页码:7987 / 8000
页数:14
相关论文
共 91 条
[1]   Novel solvent properties of choline chloride/urea mixtures [J].
Abbott, AP ;
Capper, G ;
Davies, DL ;
Rasheed, RK ;
Tambyrajah, V .
CHEMICAL COMMUNICATIONS, 2003, (01) :70-71
[2]   State-of-the-art in artificial neural network applications: A survey [J].
Abiodun, Oludare Isaac ;
Jantan, Aman ;
Omolara, Abiodun Esther ;
Dada, Kemi Victoria ;
Mohamed, Nachaat AbdElatif ;
Arshad, Humaira .
HELIYON, 2018, 4 (11)
[3]   Potential applications of deep eutectic solvents in nanotechnology [J].
Abo-Hamad, Ali ;
Hayyan, Maan ;
AlSaadi, Mohammed AbdulHakim ;
Hashim, Mohd Ali .
CHEMICAL ENGINEERING JOURNAL, 2015, 273 :551-567
[4]   Physicochemical properties of alkanolamine-choline chloride deep eutectic solvents: Measurements, group contribution and artificial intelligence prediction techniques [J].
Adeyemi, Idowu ;
Abu-Zahra, Mohammad R. M. ;
AlNashef, Inas M. .
JOURNAL OF MOLECULAR LIQUIDS, 2018, 256 :581-590
[5]   An experimental and theoretical investigation of the physicochemical properties on choline chloride - Lactic acid based natural deep eutectic solvent (NADES) [J].
Alcalde, Rafael ;
Gutierrez, Alberto ;
Atilhan, Mert ;
Aparicio, Santiago .
JOURNAL OF MOLECULAR LIQUIDS, 2019, 290
[6]   On the properties of (choline chloride plus lactic acid) deep eutectic solvent with methanol mixtures [J].
Alcalde, Rafael ;
Atilhan, Mert ;
Aparicio, Santiago .
JOURNAL OF MOLECULAR LIQUIDS, 2018, 272 :815-820
[7]   A consistent framework to characterize the impact of co-solvents in the key process thermophysical properties of choline chloride-based DESs [J].
Alencar, L. V. T. D. ;
Rodriguez-Reartes, S. B. ;
Tavares, F. W. ;
Llovell, F. .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2024, 132 :279-290
[8]   Screening of Ionic Liquids and Deep Eutectic Solvents for Physical CO2 Absorption by Soft-SAFT Using Key Performance Indicators [J].
Alkhatib, Ismail I. I. ;
Ferreira, Margarida L. ;
Alba, Carlos G. ;
Bahamon, Daniel ;
Llovell, Felix ;
Pereiro, Ana B. ;
Araujo, Joao M. M. ;
Abu-Zahra, Mohammad R. M. ;
Vega, Lourdes F. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2020, 65 (12) :5844-5861
[9]   Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents [J].
Alkhatib, Ismail I. I. ;
Bahamon, Daniel ;
Llovell, Felix ;
Abu-Zahra, Mohammad R. M. ;
Vega, Lourdes F. .
JOURNAL OF MOLECULAR LIQUIDS, 2020, 298
[10]   Machine learning for predicting the solubility of high-GWP fluorinated refrigerants in ionic liquids [J].
Asensio-Delgado, Salvador ;
Pardo, Fernando ;
Zarca, Gabriel ;
Urtiaga, Ane .
JOURNAL OF MOLECULAR LIQUIDS, 2022, 367