Implementing Real-time Visitor Counter Using Surveillance Video and MobileNet-SSD Object Detection: The Best Practice

被引:0
作者
Al Musalhi, Nasser [1 ]
Al Wahaibi, Ali Mohammed [2 ]
Abbas, Mohammed [3 ]
机构
[1] Univ Technol & Appl Sci, Dept Informat Technol, Ibra, Oman
[2] Univ Selangor UNISEL, Fac Commun Visual Art & Comp, Bestari Jaya, Malaysia
[3] Univ Technol & Appl Sci, Dept Informat Technol, Sur, Oman
关键词
CNN; Mobilenet-SSD; MobileNet; Object tracking; real-time Object detection; SSD;
D O I
10.21123/bsj.2024.10540
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Counters that keep track of the number of people who enter a building are a useful management tool for keeping everyone who uses it safe and happy. This paper aims to employ the MobileNet-SSD machine learning approach to implement a best practice for visitor counter. The researchers have to build a different scenario test dataset along with the MOT20 dataset to achieve the proposed methodology. Implementing different experiments in single -user, one -one; two -two users; many -two, and multiple users in different walking directions to detect and count shows varied results based on the experiment type. The best achieved by single -user and one-to-one model; both are scored 100% of detecting and calculating for in or out.
引用
收藏
页码:1775 / 1785
页数:11
相关论文
共 49 条
[31]   Real-time object detection with sub-pixel accuracy using the level set method [J].
Burkert, Florian ;
Butenuth, Matthias ;
Ulrich, Markus .
PHOTOGRAMMETRIC RECORD, 2011, 26 (134) :154-170
[32]   FPGA-Based Real-Time Road Object Detection System Using mmWave Radar [J].
Mohan, Anand ;
Meena, Hemant Kumar ;
Wajid, Mohd ;
Srivastava, Abhishek .
IEEE SENSORS LETTERS, 2025, 9 (04)
[33]   Real-Time Object Detection using an Ultra-High-Resolution Camera on Embedded Systems [J].
Antonakakis, Marios ;
Tzavaras, Aimilios ;
Tsakos, Konstantinos ;
Spanakis, Emmanouil G. ;
Sakkalis, Vangelis ;
Zervakis, Michalis ;
Petrakis, Euripides G. M. .
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST 2022), 2022,
[34]   Enhancing Situational Awareness: Anomaly Detection Using Real-Time Video Across Multiple Domains [J].
Singh, Rajan ;
Pal, Amrit ;
Mishra, Shruti ;
Chowdhury, Abishi .
IEEE ACCESS, 2025, 13 :73680-73696
[35]   A Real-time Scalable Object Detection System using Low-power HOG Accelerator VLSI [J].
Kenta Takagi ;
Kotaro Tanaka ;
Shintaro Izumi ;
Hiroshi Kawaguchi ;
Masahiko Yoshimoto .
Journal of Signal Processing Systems, 2014, 76 :261-274
[36]   Influence of Training Parameters on Real-Time Similar Object Detection Using YOLOv5s [J].
Kvietkauskas, Tautvydas ;
Stefanovic, Pavel .
APPLIED SCIENCES-BASEL, 2023, 13 (06)
[37]   Real-Time Robotic Grasping and Localization Using Deep Learning-Based Object Detection Technique [J].
Farag, Mohannad ;
Abd Ghafar, Abdul Nasir ;
Alsibai, Mohammed Hayyan .
2019 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2019, :139-144
[38]   A Real-time Scalable Object Detection System using Low-power HOG Accelerator VLSI [J].
Takagi, Kenta ;
Tanaka, Kotaro ;
Izumi, Shintaro ;
Kawaguchi, Hiroshi ;
Yoshimoto, Masahiko .
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2014, 76 (03) :261-274
[39]   A real time crime scene intelligent video surveillance systems in violence detection framework using deep learning techniques [J].
Sahay, Kishan Bhushan ;
Balachander, Bhuvaneswari ;
Jagadeesh, B. ;
Kumar, G. Anand ;
Kumar, Ravi ;
Parvathy, L. Rama .
COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
[40]   Real-time anomaly detection for ‘Remote’ bus stop surveillance using unsupervised conditional generative adversarial networks [J].
Xi B. ;
Chen Q. .
Neural Computing and Applications, 2024, 36 (25) :15799-15813