Dual domain distribution disruption with semantics preservation: Unsupervised domain adaptation for medical image segmentation

被引:1
|
作者
Zheng, Boyun [1 ,3 ]
Zhang, Ranran [1 ]
Diao, Songhui [1 ,3 ]
Zhu, Jingke [1 ,3 ]
Yuan, Yixuan [4 ]
Cai, Jing [5 ]
Shao, Liang [6 ]
Li, Shuo [2 ]
Qin, Wenjian [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Case Western Reserve Univ, Dept Biomed Engn, Dept Comp & Data Sci, Cleveland, OH 44106 USA
[3] Univ Chinese Acad Sci, Shenzhen Coll Adv Technol, Shenzhen 518055, Peoples R China
[4] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
[5] Hong Kong Polytech Univ, Dept Hlth Technol & Informat, Hong Kong 999077, Peoples R China
[6] Nanchang Med Coll, Jiangxi Prov Peoples Hosp, Dept Cardiol, Affiliated Hosp 1, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised domain adaptation; Medical image segmentation; Domain-agnostic; NETWORK;
D O I
10.1016/j.media.2024.103275
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent unsupervised domain adaptation (UDA) methods in medical image segmentation commonly utilize Generative Adversarial Networks (GANs) for domain translation. However, the translated images often exhibit a distribution deviation from the ideal due to the inherent instability of GANs, leading to challenges such as visual inconsistency and incorrect style, consequently causing the segmentation model to fall into the fixed wrong pattern. To address this problem, we propose a novel UDA framework known as Dual Domain Distribution Disruption with Semantics Preservation (DDSP). Departing from the idea of generating images conforming to the target domain distribution in GAN-based UDA methods, we make the model domain agnostic and focus on anatomical structural information by leveraging semantic information as constraints to guide the model to adapt to images with disrupted distributions in both source and target domains. Furthermore, we introduce the inter-channel similarity feature alignment based on the domain-invariant structural prior information, which facilitates the shared pixel-wise classifier to achieve robust performance on target domain features by aligning the source and target domain features across channels. Without any exaggeration, our method significantly outperforms existing state-of-the-art UDA methods on three public datasets (i.e., the heart dataset, the brain dataset, and the prostate dataset). The code is available at https: //github.com/MIXAILAB/DDSPSeg.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Review of Unsupervised Domain Adaptation in Medical Image Segmentation
    Hu, Wei
    Xu, Qiaozhi
    Ge, Xiangwei
    Yu, Lei
    Computer Engineering and Applications, 2024, 60 (06) : 10 - 26
  • [2] Unsupervised Domain Adaptation with Dual-Scheme Fusion Network for Medical Image Segmentation
    Zou, Danbing
    Zhu, Qikui
    Yan, Pingkun
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3291 - 3298
  • [3] Rethinking Disentanglement in Unsupervised Domain Adaptation for Medical Image Segmentation
    Wang, Yan
    Chen, Yixin
    Zhang, Yingying
    Zhu, Haogang
    2023 45TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY, EMBC, 2023,
  • [4] Style Consistency Unsupervised Domain Adaptation Medical Image Segmentation
    Chen, Lang
    Bian, Yun
    Zeng, Jianbin
    Meng, Qingquan
    Zhu, Weifang
    Shi, Fei
    Shao, Chengwei
    Chen, Xinjian
    Xiang, Dehui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 4882 - 4895
  • [5] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [6] Rethinking adversarial domain adaptation: Orthogonal decomposition for unsupervised domain adaptation in medical image segmentation
    Sun, Yongheng
    Dai, Duwei
    Xu, Songhua
    Medical Image Analysis, 2022, 82
  • [7] Unsupervised Domain Adaptation through Shape Modeling for Medical Image Segmentation
    Yao, Yuan
    Liu, Fengze
    Zhou, Zongwei
    Wang, Yan
    Shen, Wei
    Yuille, Alan
    Lu, Yongyi
    INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172, 2022, 172 : 1444 - 1458
  • [8] ADAPTIVE ENTROPY REGULARIZATION FOR UNSUPERVISED DOMAIN ADAPTATION IN MEDICAL IMAGE SEGMENTATION
    Shi, Andrew
    Feng, Wei
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [9] Black-Box Unsupervised Domain Adaptation for Medical Image Segmentation
    Kondo, Satoshi
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, DART 2023, 2024, 14293 : 22 - 30
  • [10] Style adaptation for avoiding semantic inconsistency in Unsupervised Domain Adaptation medical image segmentation
    Liu, Ziqiang
    Chen, Zhao-Min
    Chen, Huiling
    Teng, Shu
    Chen, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 105