Parameterized Local Search for Max c-Cut

被引:0
作者
Garvardt, Jaroslav [1 ]
Gruettemeier, Niels [2 ]
Komusiewicz, Christian [1 ]
Morawietz, Nils [1 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Comp Sci, Jena, Germany
[2] Fraunhofer Inst Optron Syst Technol & Image Explo, Ettlingen, Germany
来源
PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023 | 2023年
关键词
K-CUT; BRUTE-FORCE; ALGORITHMS; COMPLEXITY; APPROXIMATION; TSP;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the NP-hard MAX c-CUT problem, one is given an undirected edge-weighted graph G and wants to color the vertices of G with c colors such that the total weight of edges with distinctly colored endpoints is maximal. The case with c = 2 is the famous MAX CUT problem. To deal with the NP-hardness of this problem, we study parameterized local search algorithms. More precisely, we study LS MAX c-CUT where we are also given a vertex coloring f and an integer k and the task is to find a better coloring f ' that differs from f in at most k entries, if such a coloring exists; otherwise, f is k-optimal. We show that, for all c >= 2, LS MAX c-CUT presumably cannot be solved in g(k) center dot n(O(1)) time even on bipartite graphs. We then show an algorithm for LS MAX c-CUT with running time O((3e Delta)(k) center dot c center dot k(3) center dot Delta center dot n), where Delta is the maximum degree of the input graph. Finally, we evaluate the practical performance of this algorithm in a hill-climbing approach as a post-processing for state-of-the-art heuristics for MAX c-CUT. We show that using parameterized local search, the results of this heuristic can be further improved on a set of standard benchmark instances.
引用
收藏
页码:5586 / 5594
页数:9
相关论文
共 50 条
  • [21] Complexity and Approximability of Parameterized MAX-CSPs
    Holger Dell
    Eun Jung Kim
    Michael Lampis
    Valia Mitsou
    Tobias Mömke
    Algorithmica, 2017, 79 : 230 - 250
  • [22] Complexity and Approximability of Parameterized MAX-CSPs
    Dell, Holger
    Kim, Eun Jung
    Lampis, Michael
    Mitsou, Valia
    Moemke, Tobias
    ALGORITHMICA, 2017, 79 (01) : 230 - 250
  • [23] Improving the Smoothed Complexity of FLIP for Max Cut Problems
    Bibak, Ali
    Carlson, Charles
    Chandrasekaran, Karthekeyan
    ACM TRANSACTIONS ON ALGORITHMS, 2021, 17 (03)
  • [24] Approximate Max k-cut with subgraph guarantee
    Kann, V
    Lagergren, J
    Panconesi, A
    INFORMATION PROCESSING LETTERS, 1998, 65 (03) : 145 - 150
  • [25] On Multiway Cut Parameterized Above Lower Bounds
    Cygan, Marek
    Pilipczuk, Marcin
    Pilipczuk, Michal
    Wojtaszczyk, Jakub Onufry
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2013, 5 (01)
  • [26] Max Cut and the Smallest Eigenvalue
    Trevisan, Luca
    STOC'09: PROCEEDINGS OF THE 2009 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2009, : 263 - 271
  • [27] On the Relative Merits of Simple Local Search Methods for the MAX-SAT Problem
    Pankratov, Denis
    Borodin, Allan
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2010, PROCEEDINGS, 2010, 6175 : 223 - +
  • [28] Parameterized Complexity of DPLL Search Procedures
    Beyersdorff, Olaf
    Galesi, Nicola
    Lauria, Massimo
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2013, 14 (03)
  • [29] Local search: Is brute-force avoidable?
    Fellows, Michael R.
    Fomin, Fedor V.
    Lokshtanov, Daniel
    Rosamond, Frances
    Saurabh, Saket
    Villanger, Yngve
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (03) : 707 - 719
  • [30] Quasi-Polynomial Local Search for Restricted Max-Min Fair Allocation
    Polacek, Lukas
    Svensson, Ola
    ACM TRANSACTIONS ON ALGORITHMS, 2016, 12 (02)