Parameterized Local Search for Max c-Cut

被引:0
|
作者
Garvardt, Jaroslav [1 ]
Gruettemeier, Niels [2 ]
Komusiewicz, Christian [1 ]
Morawietz, Nils [1 ]
机构
[1] Friedrich Schiller Univ Jena, Inst Comp Sci, Jena, Germany
[2] Fraunhofer Inst Optron Syst Technol & Image Explo, Ettlingen, Germany
来源
PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023 | 2023年
关键词
K-CUT; BRUTE-FORCE; ALGORITHMS; COMPLEXITY; APPROXIMATION; TSP;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the NP-hard MAX c-CUT problem, one is given an undirected edge-weighted graph G and wants to color the vertices of G with c colors such that the total weight of edges with distinctly colored endpoints is maximal. The case with c = 2 is the famous MAX CUT problem. To deal with the NP-hardness of this problem, we study parameterized local search algorithms. More precisely, we study LS MAX c-CUT where we are also given a vertex coloring f and an integer k and the task is to find a better coloring f ' that differs from f in at most k entries, if such a coloring exists; otherwise, f is k-optimal. We show that, for all c >= 2, LS MAX c-CUT presumably cannot be solved in g(k) center dot n(O(1)) time even on bipartite graphs. We then show an algorithm for LS MAX c-CUT with running time O((3e Delta)(k) center dot c center dot k(3) center dot Delta center dot n), where Delta is the maximum degree of the input graph. Finally, we evaluate the practical performance of this algorithm in a hill-climbing approach as a post-processing for state-of-the-art heuristics for MAX c-CUT. We show that using parameterized local search, the results of this heuristic can be further improved on a set of standard benchmark instances.
引用
收藏
页码:5586 / 5594
页数:9
相关论文
共 50 条
  • [1] Max-Cut Parameterized Above the Edwards-ErdAs Bound
    Crowston, Robert
    Jones, Mark
    Mnich, Matthias
    ALGORITHMICA, 2015, 72 (03) : 734 - 757
  • [2] Parameterized algorithms for min-max multiway cut and list digraph homomorphism
    Kim, Eun Jung
    Paul, Christophe
    Sau, Ignasi
    Thilikos, Dimitrios M.
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2017, 86 : 191 - 206
  • [3] An Improved Analysis of Local Search for Max-Sum Diversification
    Cevallos, Alfonso
    Eisenbrand, Friedrich
    Zenklusen, Rico
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (04) : 1494 - 1509
  • [4] An Improved Fixed-Parameter Algorithm for Max-Cut Parameterized by Crossing Number
    Kobayashi, Yasuaki
    Kobayashi, Yusuke
    Miyazaki, Shuichi
    Tamaki, Suguru
    COMBINATORIAL ALGORITHMS, IWOCA 2019, 2019, 11638 : 327 - 338
  • [5] Local Search for Max-Sum Diversification
    Cevallos, Alfonso
    Eisenbrand, Friedrich
    Zenklusen, Rico
    PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2017, : 130 - 142
  • [6] Local Search to Approximate Max NAE-k-Sat Tightly
    Xian, Aiyong
    Zhu, Kaiyuan
    Zhu, Daming
    Pu, Lianrong
    FRONTIERS IN ALGORITHMICS (FAW 2015), 2015, 9130 : 271 - 281
  • [7] Approximating Max NAE-k-SAT by anonymous local search
    Xian, Aiyong
    Zhu, Kaiyuan
    Zhu, Daming
    Pu, Lianrong
    Liu, Hong
    THEORETICAL COMPUTER SCIENCE, 2017, 657 : 54 - 63
  • [8] Beyond Max-Cut: λ-extendible properties parameterized above the Poljak-Turzik bound
    Mnich, Matthias
    Philip, Geevarghese
    Saurabh, Saket
    Suchy, Ondrej
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2014, 80 (07) : 1384 - 1403
  • [9] Inferring Mechanisms of Compensation from E-MAP and SGA Data Using Local Search Algorithms for Max Cut
    Leiserson, Mark D. M.
    Tatar, Diana
    Cowen, Lenore J.
    Hescott, Benjamin J.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2011, 18 (11) : 1399 - 1409
  • [10] MAX CUT AND THE SMALLEST EIGENVALUE
    Trevisan, Luca
    SIAM JOURNAL ON COMPUTING, 2012, 41 (06) : 1769 - 1786