Euler-Maruyama approximation for stochastic fractional neutral integro-differential equations with weakly singular kernel

被引:2
作者
Asadzade, Javad A. [1 ]
Mahmudov, Nazim, I [1 ,2 ,3 ]
机构
[1] Eastern Mediterranean Univ, Dept Math, TR 5380, TR-99628 Mersin 10, North Cyprus, Turkiye
[2] Azerbaijan State Univ Econ UNEC, Res Ctr Econophys, Istiqlaliyyat Str 6, Baku 1001, Azerbaijan
[3] Jadara Univ, Jadara Univ Res Ctr, Amman, Jordan
关键词
Euler-Maruyama approximation; fractional stochastic neutral integro-differential equations; weakly singular kernels; local Lipschitz condition well-posedness; DIFFERENTIAL-EQUATIONS; STRONG-CONVERGENCE; EXISTENCE; UNIQUENESS; BEHAVIOR;
D O I
10.1088/1402-4896/ad5917
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This manuscript examines the problem of nonlinear stochastic fractional neutral integro-differential equations with weakly singular kernels. Our focus is on obtaining precise estimates to cover all possible cases of Abel-type singular kernels. Initially, we establish the existence, uniqueness, and continuous dependence on the initial value of the true solution, assuming a local Lipschitz condition and linear growth condition. Additionally, we develop the Euler-Maruyama method for numerical solution of the equation and prove its strong convergence under the same conditions as the well-posedness. Moreover, we determine the accurate convergence rate of this method under global Lipschitz conditions and linear growth conditions.
引用
收藏
页数:18
相关论文
共 50 条
[1]   ON THE EXISTENCE OF SOLUTIONS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS [J].
Aghajani, Asadollah ;
Jalilian, Yaghoub ;
Trujillo, Juan J. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (01) :44-69
[2]  
Ahmadova A., 2021, arXiv
[3]   Strong convergence of a Euler-Maruyama method for fractional stochastic Langevin equations [J].
Ahmadova, Arzu ;
Mahmudov, Nazim, I .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 :429-448
[4]   Existence and uniqueness results for a class of fractional stochastic neutral differential equations [J].
Ahmadova, Arzu ;
Mahmudov, Nazim, I .
CHAOS SOLITONS & FRACTALS, 2020, 139
[5]   Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations [J].
Ahmadova, Arzu ;
Mahmudov, Nazim, I .
STATISTICS & PROBABILITY LETTERS, 2021, 168
[6]   A variation of constant formula for Caputo fractional stochastic differential equations [J].
Anh, P. T. ;
Doan, T. S. ;
Huong, P. T. .
STATISTICS & PROBABILITY LETTERS, 2019, 145 :351-358
[7]  
Asadzade JA, 2024, Arxiv, DOI arXiv:2306.11131
[8]  
Asgari, 2014, COMMUN NUMER ANAL, V2014, P1, DOI DOI 10.5899/2014/cna-00212
[9]   Monte-Carlo Galerkin Approximation of Fractional Stochastic Integro-Differential Equation [J].
Badr, Abdallah Ali ;
El-Hoety, Hanan Salem .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2012, 2012
[10]   NUMERICAL METHODS FOR STOCHASTIC DELAY DIFFERENTIAL EQUATIONS VIA THE WONG-ZAKAI APPROXIMATION [J].
Cao, Wanrong ;
Zhang, Zhongqiang ;
Karniadakis, George E. M. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01) :A295-A318