Study on the Performance Evolution of Hydraulic Concrete under the Alternating Action of Freeze-Thaw and Abrasion

被引:0
|
作者
Wu, Baoguo [1 ,2 ]
Li, Shuangxi [1 ,2 ]
Jiang, Chunmeng [1 ,2 ]
机构
[1] Xinjiang Agr Univ, Coll Water & Civil Engn, Urumqi 830052, Peoples R China
[2] Xinjiang Key Lab Hydraul Engn Secur & Water Disast, Urumqi 830052, Peoples R China
基金
中国国家自然科学基金;
关键词
hydraulic concrete; freeze-thaw; abrasion; surface morphology indexes; fractal dimension; CYCLES; INTERFACES; EXPOSURE; CEMENT;
D O I
10.3390/buildings14051369
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The hydraulic concrete in the alpine region is subjected to alternating actions of freeze-thaw (F) and abrasion (W) during operation, resulting in significant deterioration of concrete durability. In this paper, the water/binder ratio (W/B) was employed as the test variable, the working condition F group and W group were set as the control group, and the working condition F-W group was used as the test group. Fast-freezing and underwater methods are used for the alternating test. By measuring the mass loss, relative dynamic elastic modulus (RDEM), surface morphological characteristics, fractal dimension of concrete in each alternating cycle, and the evolution law of concrete performance under the alternating action of F and W was explored. The results show that compared with the control group, the alternating action will accelerate the mass loss of concrete, reduce the RDEM, and cause the deterioration of surface wear. The maximum increase in mass loss and RDEM of concrete is 1.92% and 20.11%, respectively. During this process, the fractal dimension of the concrete increases as the number of alternating cycles increases, but it still does not exceed the limit of 2.4. In addition, a relationship function between the fractal dimension and the mass loss rate, volume loss, was established. It was found that the experimental group had a good linear correlation, and the correlation was close to 95%, which was about 20% higher than that of the control group.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Concrete containing recycled waste glass: strength and resistance to freeze-thaw action
    Abendeh, Raed M.
    AbuSalem, Zaydoun T.
    Baker, Mousa I. Bani
    Khedaywi, Taisir S.
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2021, 174 (02) : 75 - 87
  • [42] Freeze-thaw resistance of Ultra-High performance concrete: Dependence on concrete composition
    Lu, Zhe
    Feng, Zhen-gang
    Yao, Dongdong
    Li, Xinjun
    Ji, Hongru
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 293
  • [43] Damage evolution and plasticity development of concrete materials subjected to freeze-thaw during the load process
    Sun Ming
    Xin Dabo
    Zou Chaoying
    MECHANICS OF MATERIALS, 2019, 139
  • [44] A micro freeze-thaw damage model of concrete with fractal dimension
    Jin, Shanshan
    Zheng, Guiping
    Yu, Jing
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 257
  • [45] Global assessment of concrete specimens subjected to freeze-thaw damage
    Zahedi, Andisheh
    Komar, Andrew
    Sanchez, Leandro F. M.
    Boyd, Andrew J.
    CEMENT & CONCRETE COMPOSITES, 2022, 133
  • [46] THE FREEZE-THAW DURABILITY OF CONCRETE WITH FLY ASH, MICROSILICA AND FIBERS
    Scripca, Sabina
    Barbuta, Marinela
    ENVIRONMENTAL ENGINEERING AND MANAGEMENT JOURNAL, 2023, 22 (04): : 723 - 735
  • [47] Effects of freeze-thaw cycling on the engineering properties of vegetation concrete
    Yang, Yueshu
    Chen, Jinshun
    Zhou, Tianli
    Liu, Daxiang
    Yang, Qi
    Xiao, Hai
    Liu, Deyu
    Chen, Jiangang
    Xia, Zhenyao
    Xu, Wennian
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 345
  • [48] Investigation on performance degradation analysis method of offshore concrete structures under freeze-thaw and sulfate attack
    Liang, Yan
    Wang, Zhixuan
    OCEAN ENGINEERING, 2025, 316
  • [49] Mechanical Properties and Energy Evolution Laws of Rocks Under Freeze-Thaw
    Yue, Xiaopeng
    Liu, Ting
    Wen, Tao
    Jia, Wenjun
    Wu, Yajuan
    WATER, 2025, 17 (03)
  • [50] Durability of waste concrete powder-based geopolymer reclaimed concrete under carbonization and freeze-thaw cycles
    Yang, Liu
    Zhu, Zhiduo
    Sun, He
    Huo, Wangwen
    Zhang, Jie
    Wan, Yu
    Zhang, Chen
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 403