Local differential privacy for data security in key value pair data

被引:0
|
作者
Vijayachandran, Vipin [1 ]
Suchithra, R. [2 ]
机构
[1] Jain Univ, Bangalore, Karnataka, India
[2] Presidency Univ, Bangalore, Karnataka, India
关键词
Differential privacy; local differential privacy; Laplace algorithm; back key-value pairs; improved Laplace algorithm and DKVALP;
D O I
10.3233/JCM-230016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Data collection using local differential privacy (LDP) has mainly been studied for homogeneous data. Several data categories, including key-value pairs, must be estimated simultaneously in real-world applications, including the frequency of keys and the mean values within each key. It is challenging to achieve an acceptable utility-privacy tradeoff using LDP for key-value data collection since the data has two aspects, and a client could have multiple key-value pairs. Current LDP approaches are not scalable enough to handle large and small datasets. When the dataset is small, there is insufficient data to calculate statistical parameters; when the dataset is enormous, such as in streaming data, there is a risk of data leakage due to the high availability of too much information. The result is unsuitable for examination due to the substantial amount of randomization used in some methods. Existing LDP approaches are mostly restricted to basic data categories like category and numerical values. To address these difficulties, this research developed the DKVALP (Differentially private key-value pairs) algorithm, which ensures differential privacy in key-value pair data. This DKVALP is a lightweight, differentially private data algorithm that generates random noise using an updated Laplace algorithm to ensure differential privacy for the data. According to execution outputs on synthetic and real-world datasets, the proposed DKVALP framework offers improved usefulness for both frequency and mean predictions over the similar LDP security as conventional approaches.
引用
收藏
页码:1955 / 1970
页数:16
相关论文
共 50 条
  • [1] Key-Value Data Accurate Collection under Local Differential Privacy
    Zhang X.-J.
    Fu N.
    Meng X.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2020, 43 (08): : 1479 - 1492
  • [2] Key-value data collection and statistical analysis with local differential privacy
    Zhu, Hui
    Tang, Xiaohu
    Yang, Laurence Tianruo
    Fu, Chao
    Peng, Shuangrong
    INFORMATION SCIENCES, 2023, 640
  • [3] KSKV: Key-Strategy for Key-Value Data Collection with Local Differential Privacy
    Zhao, Dan
    You, Yang
    Luo, Chuanwen
    Chen, Ting
    Liu, Yang
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 139 (03): : 3063 - 3083
  • [4] LHKV: A Key-Value Data Collection Mechanism Under Local Differential Privacy
    Xue, Weihao
    Sang, Yingpeng
    Tian, Hui
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2023, PT I, 2023, 14146 : 228 - 242
  • [5] Utility-Improved Key-Value Data Collection with Local Differential Privacy for Mobile Devices
    TONG Ze
    DENG Bowen
    ZHENG Lele
    ZHANG Tao
    ZTE Communications, 2022, 20 (04) : 15 - 21
  • [6] Local Differential Privacy Protocol for Making Key-Value Data Robust Against Poisoning Attacks
    Horigome, Hikaru
    Kikuchi, Hiroaki
    Yu, Chia-Mu
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2023, 2023, 13890 : 241 - 252
  • [7] Collecting Partial Ordered Data With Local Differential Privacy
    Huang, Yaxuan
    Xue, Kaiping
    Zhu, Bin
    Zhao, Jingcheng
    Li, Ruidong
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 7646 - 7658
  • [8] Privacy preserving classification on local differential privacy in data centers
    Fan, Weibei
    He, Jing
    Guo, Mengjiao
    Li, Peng
    Han, Zhijie
    Wang, Ruchuan
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2020, 135 (135) : 70 - 82
  • [9] Blockchain and differential privacy-based data processing system for data security and privacy in urban computing
    Heo, Gabin
    Doh, Inshil
    COMPUTER COMMUNICATIONS, 2024, 222 : 161 - 176
  • [10] A Lightweight Matrix Factorization for Recommendation With Local Differential Privacy in Big Data
    Zhou, Hao
    Yang, Geng
    Xiang, Yang
    Bai, Yunlu
    Wang, Weiya
    IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (01) : 160 - 173