Thermal runaway and soot production of lithium-ion batteries: Implications for safety and environmental concerns

被引:14
|
作者
Xu, Yabei [1 ]
Wang, Yongjin [1 ]
Chen, Xinzhe [1 ]
Pang, Kehui [1 ]
Deng, Bingxin [1 ]
Han, Zhiyue [1 ]
Shao, Jiankun [1 ]
Qian, Kun [2 ]
Chen, Dongping [1 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
[2] Qinghai State Owned Assets Investment Management C, Xining 810008, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery; Thermal runway; Fire; Soot; Hazard; OVERCHARGE; MECHANISMS; BEHAVIOR; DAMAGE;
D O I
10.1016/j.applthermaleng.2024.123193
中图分类号
O414.1 [热力学];
学科分类号
摘要
Global energy shortages are becoming increasingly severe, and lithium-ion batteries are becoming an important substitute for fossil fuels. However, thermal runaway of a battery is a significant factor impacting battery industry development. Here, we conducted tests on battery thermal runaway using a combustion test chamber, analysing the effects of natural aging and state of charge (SOC) on battery thermal runaway. Additionally, EDS and XPS were used to analyse the soot particles formed during thermal runaway. Four stages in thermal runaway, e.g., battery bulge, smoke release, jet fire, and fire extinction. LiFePO 4 with a higher SOC is more likely to cause thermal runaway. In addition, natural aging has an obvious impact on the intensity of thermal runaway. The gas products generated during a battery fire are identified as C1-C4 hydrocarbons. The soot generated by battery combustion presents a typical "core-shell" structure. The soot surface exhibits C-C, C-O, and O-H bonds, while the soot from early manufactured batteries also contains O-C -- O and pi bonds. Soot contains not only C and O but also trace amounts of Li, F, P and Fe. These results reveal the characteristics of soot emission during thermal runaway of batteries, providing valuable insights for evaluating their toxicity and environmental impact.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Composition and Explosibility of Gas Emissions from Lithium-Ion Batteries Undergoing Thermal Runaway
    Amano, Kofi Owusu Ansah
    Hahn, Sarah-K.
    Butt, Noman
    Vorwerk, Pascal
    Gimadieva, Elena
    Tschirschwitz, Rico
    Rappsilber, Tim
    Krause, Ulrich
    BATTERIES-BASEL, 2023, 9 (06):
  • [32] Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test
    Zhao, Chunpeng
    Wang, Tinghua
    Huang, Zheng
    Wu, Jingyun
    Zhou, Hongwei
    Ma, Mina
    Xu, Jiajia
    Wang, Zhaoyu
    Li, Huang
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2021, 38
  • [33] Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Cui, Hao
    Liu, Xiang
    Jin, Changyong
    Zhang, Fangshu
    Xu, Chengshan
    Hsu, Hungjen
    Gao, Shang
    Chen, Tianyu
    Li, Yalun
    Wang, Tianze
    Wang, Hao
    Li, Maogang
    Ouyang, Minggao
    APPLIED ENERGY, 2019, 246 : 53 - 64
  • [34] Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway
    Yang, Yu
    Wang, Renjie
    Shen, Zhaojie
    Yu, Quanqing
    Xiong, Rui
    Shen, Weixiang
    ADVANCES IN APPLIED ENERGY, 2023, 11
  • [35] Revealing the Impact of Slight Electrical Abuse on the Thermal Safety Characteristics for Lithium-Ion Batteries
    Zhang, Guangxu
    Wei, Xuezhe
    Chen, Siqi
    Zhu, Jiangong
    Han, Guangshuai
    Dai, Haifeng
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12858 - 12870
  • [36] Advancements in the safety of Lithium-Ion Battery: The Trigger, consequence and mitigation method of thermal runaway
    Hu, Xingjun
    Gao, Feifan
    Xiao, Yang
    Wang, Deping
    Gao, Zhenhai
    Huang, Zhifan
    Ren, Sida
    Jiang, Nan
    Wu, Sitong
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [37] Safety assessment of thermal runaway behavior of lithium-ion cells with actual installed state
    Zhou, Yangjie
    Zhu, Xiaoqing
    Wang, Zhenpo
    Shan, Tongxin
    Zhang, Jinghan
    Sun, Zhiwei
    APPLIED THERMAL ENGINEERING, 2023, 229
  • [38] Research on overcharge mitigations and thermal runaway risk of 18650 lithium-ion batteries
    Yan, W. H.
    Huang, W. X.
    Yang, Y.
    Wei, Z. W.
    Zhen, H. S.
    Lin, Y.
    JOURNAL OF ENERGY STORAGE, 2025, 120
  • [39] Comparison on Thermal Runaway and Critical Characteristics of Cylindrical Lithium-Ion Batteries: A Review
    Li, Wei
    Wang, Jiasheng
    Sun, Chunfeng
    Fan, Xiaoping
    Gong, Lingzhu
    Huang, Jiale
    Wu, Jian-heng
    Yu, Gending
    Chen, Rongguo
    Li, Jingling
    Duh, Yih-Shing
    ACS CHEMICAL HEALTH & SAFETY, 2025, : 133 - 156
  • [40] Avoiding thermal runaway in lithium-ion batteries using ultrasound detection of early failure mechanisms
    Appleberry, Maura C.
    Kowalski, Jeffrey A.
    Africk, Steven A.
    Mitchell, Jared
    Ferree, Thomas C.
    Chang, Vincent
    Parekh, Vashisth
    Xu, Ziyi
    Ye, Ziwen
    Whitacre, Jay F.
    Murphy, Shawn D.
    JOURNAL OF POWER SOURCES, 2022, 535