Thermal runaway and soot production of lithium-ion batteries: Implications for safety and environmental concerns

被引:14
|
作者
Xu, Yabei [1 ]
Wang, Yongjin [1 ]
Chen, Xinzhe [1 ]
Pang, Kehui [1 ]
Deng, Bingxin [1 ]
Han, Zhiyue [1 ]
Shao, Jiankun [1 ]
Qian, Kun [2 ]
Chen, Dongping [1 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
[2] Qinghai State Owned Assets Investment Management C, Xining 810008, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery; Thermal runway; Fire; Soot; Hazard; OVERCHARGE; MECHANISMS; BEHAVIOR; DAMAGE;
D O I
10.1016/j.applthermaleng.2024.123193
中图分类号
O414.1 [热力学];
学科分类号
摘要
Global energy shortages are becoming increasingly severe, and lithium-ion batteries are becoming an important substitute for fossil fuels. However, thermal runaway of a battery is a significant factor impacting battery industry development. Here, we conducted tests on battery thermal runaway using a combustion test chamber, analysing the effects of natural aging and state of charge (SOC) on battery thermal runaway. Additionally, EDS and XPS were used to analyse the soot particles formed during thermal runaway. Four stages in thermal runaway, e.g., battery bulge, smoke release, jet fire, and fire extinction. LiFePO 4 with a higher SOC is more likely to cause thermal runaway. In addition, natural aging has an obvious impact on the intensity of thermal runaway. The gas products generated during a battery fire are identified as C1-C4 hydrocarbons. The soot generated by battery combustion presents a typical "core-shell" structure. The soot surface exhibits C-C, C-O, and O-H bonds, while the soot from early manufactured batteries also contains O-C -- O and pi bonds. Soot contains not only C and O but also trace amounts of Li, F, P and Fe. These results reveal the characteristics of soot emission during thermal runaway of batteries, providing valuable insights for evaluating their toxicity and environmental impact.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Thermal Runaway of Lithium-Ion Batteries without Internal Short Circuit
    Liu, Xiang
    Ren, Dongsheng
    Hsu, Hungjen
    Feng, Xuning
    Xu, Gui-Liang
    Zhuang, Minghao
    Gao, Han
    Lu, Languang
    Han, Xuebing
    Chu, Zhengyu
    Li, Jianqiu
    He, Xiangming
    Amine, Khalil
    Ouyang, Minggao
    JOULE, 2018, 2 (10) : 2047 - 2064
  • [22] A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods
    Xu, Chengshan
    Fan, Zhuwei
    Zhang, Mengqi
    Wang, Peiben
    Wang, Huaibin
    Jin, Changyong
    Peng, Yong
    Jiang, Fachao
    Feng, Xuning
    Ouyang, Minggao
    CELL REPORTS PHYSICAL SCIENCE, 2023, 4 (12):
  • [23] A multi-factor evaluation method for the thermal runaway risk of lithium-ion batteries
    Wang, Zhirong
    Chen, Shichen
    He, Xinrui
    Wang, Chao
    Zhao, Dan
    JOURNAL OF ENERGY STORAGE, 2022, 45
  • [24] The investigation of thermal runaway propagation of lithium-ion batteries under different vertical distances
    Tao, Changfa
    Li, Guangyu
    Zhao, Jianbo
    Chen, Guang
    Wang, Zhigang
    Qian, Yejian
    Cheng, Xiaozhang
    Liu, Xiaoping
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 142 (04) : 1523 - 1532
  • [25] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394
  • [26] Causes and mechanism of thermal runaway in lithium-ion batteries, contradictions in the generally accepted mechanism
    Galushkin, Nikolay E.
    Yazvinskaya, Nataliya N.
    Galushkin, Dmitriy N.
    JOURNAL OF ENERGY STORAGE, 2024, 86
  • [27] Aging effect delays overcharge-induced thermal runaway of lithium-ion batteries
    Yuan, Wei
    Liang, Dong
    Chu, Yanyan
    Wang, Qingsong
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2022, 79
  • [28] Characteristics of particle emissions from lithium-ion batteries during thermal runaway: A review
    Li, Weifeng
    Xue, Yao
    Feng, Xinbo
    Rao, Shun
    Zhang, Tianyao
    Gao, Zhenhai
    Guo, Yueming
    Zhou, Haoyu
    Zhao, Haoyuan
    Song, Zelai
    Shi, Jiawei
    Wang, Hewu
    Wang, Deping
    JOURNAL OF ENERGY STORAGE, 2024, 78
  • [29] Influence of inhomogeneous state of charge distributions on thermal runaway propagation in lithium-ion batteries
    Theiler, Michael
    Baumann, Alexander
    Endisch, Christian
    JOURNAL OF ENERGY STORAGE, 2024, 95
  • [30] Study on the Thermal Runaway and Its Propagation of Lithium-Ion Batteries Under Low Pressure
    Wang, Huaibin
    Du, Zhiming
    Liu, Ling
    Zhang, Zelin
    Hao, Jinyuan
    Wang, Qinzheng
    Wang, Shuang
    FIRE TECHNOLOGY, 2020, 56 (06) : 2427 - 2440