Counterexamples to the Hasse Principle among the twists of the Klein quartic

被引:0
作者
Garcia, Elisa Lorenzo [1 ,2 ]
Vullers, Michael [3 ]
机构
[1] Univ Neuchatel, Inst Math, Rue Emile Argand 11, CH-2000 Neuchatel, Switzerland
[2] Univ Rennes 1, Lab IRMAR, Off 602,Campus Beaulieu, F-35042 Rennes, France
[3] IT Monitoring Engineer TenneT TSOBV, Arnhem, Netherlands
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2024年 / 35卷 / 04期
关键词
Local-global principle; Modular curves; Twists; CURVES;
D O I
10.1016/j.indag.2023.08.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we inspect from closer the local and global points of the twists of the Klein quartic. For the local ones we use geometric arguments, while for the global ones we strongly use the modular interpretation of the twists. The main result is providing families with (conjecturally infinitely many) twists of the Klein quartic that are counterexamples to the Hasse Principle. (c) 2023 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:638 / 645
页数:8
相关论文
共 14 条
[1]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[2]  
Elkies Noam, 1998, Eightfold Way: Beauty Klein's Quartic Curve, P35
[3]   On twists of the modular curves X(p) [J].
Fernández, J ;
Lario, JC ;
Rio, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2005, 37 :342-350
[4]   Twists of non-hyperelliptic curves of genus 3 [J].
Garcia, Elisa Lorenzo .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (06) :1785-1812
[5]   Twists of non-hyperelliptic curves [J].
Garcia, Elisa Lorenzo .
REVISTA MATEMATICA IBEROAMERICANA, 2017, 33 (01) :169-182
[6]   On the modular curve XE(7) [J].
Halberstadt, E ;
Kraus, A .
EXPERIMENTAL MATHEMATICS, 2003, 12 (01) :27-40
[7]   Reduction type of smooth plane quartics [J].
Lercier, Reynald ;
Liu, Qing ;
Garcia, Elisa Lorenzo ;
Ritzenthaler, Christophe .
ALGEBRA & NUMBER THEORY, 2021, 15 (06) :1429-1468
[8]  
LMFDB Collab, 2022, The L-functions and modular forms database
[9]   Twists of genus three curves over finite fields [J].
Meagher, Stephen ;
Top, Jaap .
FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (05) :347-368
[10]   On polyquadratic twists of X0(N) [J].
Ozman, Ekin .
JOURNAL OF NUMBER THEORY, 2013, 133 (10) :3325-3338