Continuous flow ring-opening polymerization and ring-opening metathesis polymerization

被引:1
|
作者
Liu, Yihuan [1 ]
Ou, Shi [1 ]
Wu, Jiaqi [1 ]
Zhao, Rongji [1 ]
Hou, Ruixiang [2 ]
Li, Xiaomin [2 ]
Sun, Yongxiang [3 ]
Li, Yuguang [4 ]
Hu, Xin [5 ]
Zhu, Ning [1 ]
Guo, Kai [1 ,6 ]
机构
[1] Nanjing Tech Univ, Coll Biotechnol & Pharmaceut Engn, Nanjing 211816, Peoples R China
[2] Sinopec, Beijing Res Inst Chem Ind, Beijing 100013, Peoples R China
[3] Sumec Text Technol & Ind Co LTD, Nanjing 210019, Peoples R China
[4] Inst Nanjing Adv Biomat & Proc Equipment, Nanjing 211299, Peoples R China
[5] Nanjing Tech Univ, Coll Mat Sci & Engn, Nanjing 211816, Peoples R China
[6] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
关键词
Continuous flow; Ring-opening polymerization; Ring-opening metathesis polymerization; Polymer synthesis; MICROWAVE-ASSISTED POLYMERIZATIONS; OLEFIN METATHESIS; ENZYMATIC-SYNTHESIS; SYNTHETIC APPROACH; CARBON-DIOXIDE; SCALE-UP; CATALYSTS; POLY(EPSILON-CAPROLACTONE); 2-ETHYL-2-OXAZOLINE; BOTTLEBRUSH;
D O I
10.1016/j.eurpolymj.2024.113288
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The combination of microflow technology and ring-opening polymerization (ROP) or ring-opening metathesis polymerization (ROMP) has been proved to be an effective method for well-defined polymers. Microreactorbased ROP or ROMP enables the distinguished advantages over traditional batchwise reactor, including faster apparent polymerization rate, higher conversion and chemoselectivity, narrower dispersity, easier scale-up and the ability to telescope several synthetic steps into a single system. In this view, ROP of a variety of cyclic monomers was highlighted, including lactone, lactide, epoxide, 2-oxazoline, N-carboxyanhydride and cyclic phosphoester. ROMP in the context of flow chemistry was introduced. Challenges and opportunities are proposed for the future development of continuous flow ROP and ROMP.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Photoinitiated Ring-Opening Metathesis Polymerization
    Joo, Wontae
    Chen, Christopher H.
    Moerdyk, Jonathan P.
    Deschner, Ryan P.
    Bielawski, Christopher W.
    Willson, Carlton Grant
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2019, 57 (17) : 1791 - 1795
  • [2] Living ring-opening metathesis polymerization
    Bielawski, Christopher W.
    Grubbs, Robert H.
    PROGRESS IN POLYMER SCIENCE, 2007, 32 (01) : 1 - 29
  • [3] Oxidation-Triggered Ring-Opening Metathesis Polymerization
    Savka, Roman
    Foro, Sabine
    Gallei, Markus
    Rehahn, Matthias
    Plenio, Herbert
    CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (32) : 10655 - 10662
  • [4] Ring-opening polymerization
    Penczek, Stanislaw
    Pretula, Julia
    Slomkowski, Stanislaw
    CHEMISTRY TEACHER INTERNATIONAL, 2021, 3 (02) : 33 - 57
  • [5] In situ catalyst systems for ring-opening metathesis polymerization
    Kelsey, DR
    Handlin, DL
    Narayana, M
    Scardino, BM
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 1997, 35 (14) : 3027 - 3047
  • [6] Metal-Free Ring-Opening Metathesis Polymerization
    Ogawa, Kelli A.
    Goetz, Adam E.
    Boydston, Andrew J.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (04) : 1400 - 1403
  • [7] Expedient synthesis and ring-opening metathesis polymerization of pyridinonorbornenes
    Hancock, Sarah N.
    Yuntawattana, Nattawut
    Valdez, Sara M.
    Michaudel, Quentin
    POLYMER CHEMISTRY, 2022, 13 (39) : 5530 - 5535
  • [8] cis/trans Gradients in living ring-opening metathesis polymerization
    Bishop, John P.
    Register, Richard A.
    POLYMER, 2010, 51 (18) : 4121 - 4126
  • [9] Acyclic metathesis during ring-opening metathesis polymerization of cyclopentene
    Lee, LBW
    Register, RA
    POLYMER, 2004, 45 (19) : 6479 - 6485
  • [10] Synthesis of latex particles by ring-opening metathesis polymerization
    Quémener, D
    Chemtob, A
    Héroguez, V
    Gnanou, Y
    POLYMER, 2005, 46 (04) : 1067 - 1075