Role of CRISPR-Cas systems and anti-CRISPR proteins in bacterial antibiotic resistance

被引:6
|
作者
Kadkhoda, Hiva [1 ,2 ]
Gholizadeh, Pourya [3 ,4 ]
Kafil, Hossein Samadi [1 ,5 ]
Ghotaslou, Reza [1 ,6 ]
Pirzadeh, Tahereh [1 ,6 ]
Rezaee, Mohammad Ahangarzadeh [1 ,6 ]
Nabizadeh, Edris [1 ,2 ]
Feizi, Hadi [1 ,7 ]
Aghazadeh, Mohammad [1 ,6 ]
机构
[1] Tabriz Univ Med Sci, Fac Med, Dept Med Microbiol, Tabriz, Iran
[2] Tabriz Univ Med Sci, Student Res Comm, Tabriz, Iran
[3] Ardabil Univ Med Sci, Digest Dis Res Ctr, Ardebil, Iran
[4] Ardabil Univ Med Sci, Zoonoses Res Ctr, Ardebil, Iran
[5] Tabriz Univ Med Sci, Drug Appl Res Ctr, Tabriz, Iran
[6] Tabriz Univ Med Sci, Immunol Res Ctr, Tabriz, Iran
[7] Aalinasab Hosp, Dept Med Microbiol, Social Secur Org, Tabriz, Iran
关键词
Horizontal gene transfer; Mobile genetic elements; CRISPR-Cas system; Anti -CRISPR proteins; Antibiotic resistance genes; HORIZONTAL GENE-TRANSFER; ESCHERICHIA-COLI; IMMUNITY; DELIVERY; BACTERIOPHAGES; ASSOCIATION; INHIBITION; PATHOGENS; EVOLUTION; PLASMIDS;
D O I
10.1016/j.heliyon.2024.e34692
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The emergence and development of antibiotic resistance in bacteria is a serious threat to global public health. Antibiotic resistance genes (ARGs) are often located on mobile genetic elements (MGEs). They can be transferred among bacteria by horizontal gene transfer (HGT), leading to the spread of drug-resistant strains and antibiotic treatment failure. CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated genes) is one of the many strategies bacteria have developed under long-term selection pressure to restrict the HGT. CRISPRCas systems exist in about half of bacterial genomes and play a significant role in limiting the spread of antibiotic resistance. On the other hand, bacteriophages and other MGEs encode a wide range of anti-CRISPR proteins (Acrs) to counteract the immunity of the CRISPR-Cas system. The Acrs could decrease the CRISPR-Cas system's activity against phages and facilitate the acquisition of ARGs and virulence traits for bacteria. This review aimed to assess the relationship between the CRISPR-Cas systems and Acrs with bacterial antibiotic resistance. We also highlighted the CRISPR technology and Acrs to control and prevent antibacterial resistance. The CRISPR-Cas system can target nucleic acid sequences with high accuracy and reliability; therefore, it has become a novel gene editing and gene therapy tool to prevent the spread of antibiotic resistance. CRISPR-based approaches may pave the way for developing smart antibiotics, which could eliminate multidrug-resistant (MDR) bacteria and distinguish between pathogenic and beneficial microorganisms. Additionally, the engineered anti-CRISPR gene-containing phages in combination with antibiotics could be used as a cutting-edge treatment approach to reduce antibiotic resistance.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] CRISPR-Cas System: A New Dawn to Combat Antibiotic Resistance
    Rafiq, Muhammad Shahzad
    Shabbir, Muhammad AbuBakar
    Raza, Ahmed
    Irshad, Shoaib
    Asghar, Andleeb
    Maan, Muhammad Kashif
    Gondal, Mushtaq Ahmed
    Hao, Haihong
    BIODRUGS, 2024, 38 (03) : 387 - 404
  • [42] Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins
    Zhu, Yalan
    Gao, Ang
    Zhan, Qi
    Wang, Yong
    Feng, Han
    Liu, Songqing
    Gao, Guangxia
    Serganov, Alexander
    Gao, Pu
    MOLECULAR CELL, 2019, 74 (02) : 296 - +
  • [43] Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type II Anti-CRISPR Proteins
    Hwang, Sungwon
    Maxwell, Karen L.
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (07)
  • [44] Degradation of Antibiotic Resistance Genes by VADER with CRISPR-Cas Immunity
    Li, Xin
    Bao, Nan
    Yan, Zhen
    Yuan, Xian-Zheng
    Wang, Shu-Guang
    Xia, Peng-Fei
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2023, 89 (04)
  • [45] CRISPR-Cas System in Antibiotic Resistance Plasmids in Klebsiella pneumoniae
    Kamruzzaman, Muhammad
    Iredell, Jonathan R.
    FRONTIERS IN MICROBIOLOGY, 2020, 10
  • [46] CRISPR-Cas Systems in Streptococci
    Gong, Tao
    Lu, Miao
    Zhou, Xuedong
    Zhang, Anqi
    Tang, Boyu
    Chen, Jiamin
    Jing, Meiling
    Li, Yuqing
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2019, 32 : 1 - 37
  • [47] 肺炎克雷伯菌CRISPR-Cas系统及anti-CRISPR蛋白家族研究进展
    姜春宇
    郭晓奎
    秦金红
    上海交通大学学报(医学版), 2022, 42 (12) : 1757 - 1765
  • [48] Prediction of protein-protein interactions between anti-CRISPR and CRISPR-Cas using machine learning technique
    Murmu, Sneha
    Chaurasia, Himanshushekhar
    Majumdar, Sayanti Guha
    Rao, A. R.
    Rai, Anil
    Archak, Sunil
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 32 (04) : 818 - 830
  • [49] CRISPR-Cas systems in enterococci
    Cabral, Amanda Seabra
    Lacerda, Fernanda de Freitas
    Leite, Vitor Luis Macena
    de Miranda, Filipe Martire
    da Silva, Amanda Beiral
    dos Santos, Barbara Araujo
    Lima, Jailton Lobo da Costa
    Teixeira, Lucia Martins
    Neves, Felipe Piedade Goncalves
    BRAZILIAN JOURNAL OF MICROBIOLOGY, 2024, : 3945 - 3957
  • [50] Identification of an anti-CRISPR protein that inhibits the CRISPR-Cas type I-B system in Clostridioides difficile
    Muzyukina, Polina
    Shkaruta, Anton
    Guzman, Noemi M.
    Andreani, Jessica
    Borges, Adair L.
    Bondy-Denomy, Joseph
    Maikova, Anna
    Semenova, Ekaterina
    Severinov, Konstantin
    Soutourina, Olga
    MSPHERE, 2023, 8 (06) : e0040123