Rationally coordinating polymer enabling effective Li-ion percolation network in composite electrolyte for solid-state Li-metal batteries

被引:10
|
作者
Zhao, Long [1 ]
Du, Yunfei [2 ]
Wang, Chenming [1 ]
Li, Dong [3 ]
Li, Hao [1 ]
Zhao, Yong [1 ]
机构
[1] Henan Univ, Sch Mat Sci & Engn, Key Lab Special Funct Mat, Minist Educ, Kaifeng 475004, Peoples R China
[2] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[3] Jiangxi Univ Sci & Technol, Fac Mat Met & Chem, Jiangxi Key Lab Power Battery & Mat, Ganzhou 341000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Solid-state batteries; Rational coordination; Ionic conduction; Composite electrolytes; Interfacial stability; LITHIUM; STABILITY; ANODE;
D O I
10.1016/j.ensm.2024.103360
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sluggish lithium-ion mobility and inferior electrolyte/electrode interfacial compatibility of composite solid electrolytes greatly hinder the practical application of solid-state lithium-metal batteries. Here, a novel composite polymer electrolyte (CPE) with effective Li+ percolation network is synthesized based on single-ion conductive polymer lithiated polyvinyl formal (LiPVFM) and garnet Li6.4La3Zr2Ga0.2O12 (LLZGO) nanoparticles. The supramolecular interaction between the branched hydroxyl in LiPVFM and the lattice oxygen in LLZGO fillers endows CPE with a continuous percolation structure and improved toughness. Meanwhile, the rational O-Li+ coordination in the LiPVFM random polymer significantly enhances Li+ transfer within the percolation network. Therefore, this as-prepared CPE presents a lithium-ion transference number of 0.75 and an ionic conductivity of 0.527 mS cm-1 at 30 degrees C, alongside an electrochemical stability window of 4.6 V and a substantial suppression of Li dendrite growth. In addition, ultra-stable interfaces between this CPE and highvoltage LiNi0.6Mn0.2Co0.2O2 (NMC) cathode during cycling can be determined by in-situ electrochemical impedance spectroscopy and in-situ differential electrochemical mass spectrometry characterization. This work is a new exploration for the structural design of CPEs and highlights the importance of "rational coordination" of alkali cation in solid batteries.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Synergized Tricomponent All-Inorganics Solid Electrolyte for Highly Stable Solid-State Li-Ion Batteries
    Xu, Guixiang
    Zhang, Xin
    Sun, Shuyang
    Zhou, Yangfan
    Liu, Yongfeng
    Yang, Hangwang
    Huang, Zhenguo
    Fang, Fang
    Sun, Wenping
    Hong, Zijiang
    Gao, Mingxia
    Pan, Hongge
    ADVANCED SCIENCE, 2023, 10 (25)
  • [42] Optimizing Li-ion Solvation in Gel Polymer Electrolytes to Stabilize Li-Metal Anode
    Huang, Kangsheng
    Bi, Sheng
    Xu, Hai
    Wu, Langyuan
    Fang, Chang
    Zhang, Xiaogang
    CHEMSUSCHEM, 2023, 16 (19)
  • [43] Solid-State Li-Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces
    Kim, Kun Joong
    Balaish, Moran
    Wadaguchi, Masaki
    Kong, Lingping
    Rupp, Jennifer L. M.
    ADVANCED ENERGY MATERIALS, 2021, 11 (01)
  • [44] Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries
    Jee, Seung Hyun
    Lee, Man-Jong
    Ahn, Ho Sang
    Kim, Dong-Joo
    Choi, Ji Won
    Yoon, Seok Jin
    Nam, Sang Cheol
    Kim, Soo Ho
    Yoon, Young Soo
    SOLID STATE IONICS, 2010, 181 (19-20) : 902 - 906
  • [45] Photo-Thermal Mediated Li-ion Transport for Solid-State Lithium Metal Batteries
    Wang, Qin
    Sun, Qi
    Pu, Yulai
    Sun, Wenbo
    Lin, Chengjiang
    Duan, Xiaozheng
    Ren, Xiaoyan
    Lu, Lehui
    SMALL, 2024, 20 (22)
  • [46] Design Strategies for Anodes and Interfaces Toward Practical Solid-State Li-Metal Batteries
    Yoon, Gabin
    Kim, Sewon
    Kim, Ju-Sik
    ADVANCED SCIENCE, 2023, 10 (27)
  • [47] Salt-Free Solid Polymer Electrolytes Enabling Inorganic-Rich Solid-Electrolyte Interphase for Stable and Cost-Effective Li-Metal Batteries
    Chen, Xiangxiang
    Wu, Junru
    Zhang, Wentao
    Li, Ji
    Gao, Ziyao
    Zhao, Xu
    Yu, Kuang
    He, Yan-Bing
    Li, Baohua
    Kang, Feiyu
    Peng, Lele
    SMALL, 2025,
  • [48] NASICON solid electrolyte coated by indium film for all-solid-state Li-metal batteries
    Liu, Yi-Jie
    Fang, Ru-Yi
    Mitlin, David
    TUNGSTEN, 2022, 4 (04) : 316 - 322
  • [49] Characterizing the critical challenges of Li-metal solid-state batteries: From micrometer to centimeter
    Ham, So-Yeon
    Cronk, Ashley
    Meng, Ying Shirley
    Jang, Jihyun
    MRS BULLETIN, 2023, 48 (12) : 1269 - 1279
  • [50] A "rigid and flexible" multi-functional structure for solid-state Li-metal batteries
    Rahmati, Ziba
    Sun, Danyi
    Wu, Nan
    Qin, Changyong
    Huang, Xinyu
    Huang, Kevin
    SOLID STATE IONICS, 2024, 406