A new configured lithiated silicon-sulfur battery built on 3D graphene with superior electrochemical performances

被引:105
作者
Li, Bin [1 ]
Li, Songmei [1 ]
Xu, Jingjing [1 ]
Yang, Shubin [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Key Lab Aerosp Adv Mat & Performance, Minist Educ, Beijing 100191, Peoples R China
基金
美国国家科学基金会;
关键词
HIGH-CAPACITY; CATHODE MATERIALS; HIGHLY EFFICIENT; HIGH-POROSITY; ARRAY ANODE; LITHIUM; CARBON; ENERGY;
D O I
10.1039/c6ee01019a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although lithium-sulfur batteries are one of the most promising energy storage devices with broad applications, they are hampered by the poor cycling problems associated with both the sulfur cathode and the lithium-metal anode. Herein, we develop a newly configured lithiated silicon-sulfur battery by using a honeycomb-like sulfur copolymer on 3D graphene (3D cpS-G) as the cathode and a 3D lithiated Si-G network as the anode. In the case of 3D cpS-G, the honeycomb-like sulfur copolymer are uniformly distributed on three-dimensional graphene networks. Such a unique cathode not only facilitates the fast diffusions of electron and lithium, but can also efficiently inhibit the dissolution of polysulfides and accommodate the large volume change of the sulfur copolymer during cycling processes. When assembled as half cells, the 3D cpS-G exhibits excellent electrochemical performance. More attractive is that when coupled with the 3D lithiated Si-G anode, the full Si-S cell exhibits superior electrochemical performances in term of a high reversible capacity of 620 mA h g(-1), an ultrahigh energy density of 1147 W h kg(-1) (based on the total mass of the cathode and the anode), good high-rate capability and excellent cycle performance over 500 cycles (0.028% capacity loss per cycle).
引用
收藏
页码:2025 / 2030
页数:6
相关论文
共 40 条
[1]   An Advanced Lithium-Ion Sulfur Battery for High Energy Storage [J].
Agostini, Marco ;
Scrosati, Bruno ;
Hassoun, Jusef .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[2]   Anodes for Rechargeable Lithium-Sulfur Batteries [J].
Cao, Ruiguo ;
Xu, Wu ;
Lv, Dongping ;
Xiao, Jie ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[3]  
Chung WJ, 2013, NAT CHEM, V5, P518, DOI [10.1038/NCHEM.1624, 10.1038/nchem.1624]
[4]   Cathode Composites for Li-S Batteries via the Use of Oxygenated Porous Architectures [J].
Demir-Cakan, Rezan ;
Morcrette, Mathieu ;
Nouar, Farid ;
Davoisne, Carine ;
Devic, Thomas ;
Gonbeau, Danielle ;
Dominko, Robert ;
Serre, Christian ;
Ferey, Gerard ;
Tarascon, Jean-Marie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (40) :16154-16160
[5]   Rechargeable lithiated silicon-sulfur (SLS) battery prototypes [J].
Elazari, Ran ;
Salitra, Gregory ;
Gershinsky, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 14 (01) :21-24
[6]   Sulfur-Impregnated Activated Carbon Fiber Cloth as a Binder-Free Cathode for Rechargeable Li-S Batteries [J].
Elazari, Ran ;
Salitra, Gregory ;
Garsuch, Arnd ;
Panchenko, Alexander ;
Aurbach, Doron .
ADVANCED MATERIALS, 2011, 23 (47) :5641-+
[7]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[8]   Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries [J].
Fanous, Jean ;
Wegner, Marcus ;
Grimminger, Jens ;
Andresen, Anne ;
Buchmeiser, Michael R. .
CHEMISTRY OF MATERIALS, 2011, 23 (22) :5024-5028
[9]   Evidence of covalent synergy in silicon-sulfur-graphene yielding highly efficient and long-life lithium-ion batteries [J].
Hassan, Fathy M. ;
Batmaz, Rasim ;
Li, Jingde ;
Wang, Xiaolei ;
Xiao, Xingcheng ;
Yu, Aiping ;
Chen, Zhongwei .
NATURE COMMUNICATIONS, 2015, 6
[10]   Bimodal Mesoporous Carbon Nanofibers with High Porosity: Freestanding and Embedded in Membranes for Lithium-Sulfur Batteries [J].
He, Guang ;
Mandlmeier, Benjamin ;
Schuster, Joerg ;
Nazar, Linda F. ;
Bein, Thomas .
CHEMISTRY OF MATERIALS, 2014, 26 (13) :3879-3886