UAV remote sensing phenotyping of wheat collection for response to water stress and yield prediction using machine learning

被引:8
|
作者
Sharma, Vikas [1 ,2 ]
Honkavaara, Eija [3 ]
Hayden, Matthew [2 ,4 ]
Kant, Surya [1 ,2 ,4 ,5 ]
机构
[1] Agr Victoria, Grains Innovat Pk, 110 Natimuk Rd, Horsham, Vic 3400, Australia
[2] La Trobe Univ, Sch Appl Syst Biol, Bundoora, Vic 3083, Australia
[3] Natl Land Survey Finland, Finnish Geospatial Res Inst, Espoo 02150, Finland
[4] Agr Victoria, Ctr AgriBiosc, AgriBio, 5 Ring Rd, Bundoora, Vic 3083, Australia
[5] Univ Melbourne, Sch Agr Food & Ecosyst Sci, Parkville, Vic 3010, Australia
来源
PLANT STRESS | 2024年 / 12卷
关键词
High -throughput crop phenotyping; Yield prediction; Machine learning; Multispectral; UAV; Water stress; FIELD; SELECTION; DROUGHT;
D O I
10.1016/j.stress.2024.100464
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Water stress is a significant challenge for global food production. Rainfall pattern is becoming unpredictable due to climate change that causes unprecedent water stress conditions in cereals production including wheat which is one of the important staple food crops. To sustain wheat production under water limiting conditions, there is an urgent need to develop drought-tolerant wheat varieties. For this, screening large numbers of wheat genotype for traits related to growth and yield under water stressed conditions is crucial. In this study, we deployed high-throughput phenotyping approaches, including uncrewed aerial vehicle (UAV)-based multispectral imaging, advanced machine and deep learning regression models. Two separate field experiments, irrigated and rainfed, were conducted comprising 553 wheat genotypes, and collected dataset for traits such as plant height, phenology, grain yield, and timeseries multispectral imaging. UAV-multispectral imagery derived plant height measurements showed a high correlation (R-2=0.75) with manual measurements. Vegetation indices derived from multispectral data differentiated growth pattern of genotypes under rainfed and irrigated conditions and were used in yield prediction modeling. Wheat genotypes were effectively ranked, and their response differentiated for water stress tolerance based on yield index, stress susceptibility index, and yield loss%. Importantly, yield prediction in genotypes was computed using four machine learning regression algorithms i.e., linear regression, support vector machine, random forest, and deep learning H2O-3, where H2O-3 was the most accurate model with R-2=0.80. Results show that multispectral-driven traits combined with machine learning models effectively phenotyped large wheat population and such approaches can be integrated in crop breeding program to develop varieties tolerant to water stress.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Moisture content estimation and senescence phenotyping of novel Miscanthus hybrids combining UAV-based remote sensing and machine learning
    Impollonia, Giorgio
    Croci, Michele
    Martani, Enrico
    Ferrarini, Andrea
    Kam, Jason
    Trindade, Luisa M.
    Clifton-Brown, John
    Amaducci, Stefano
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2022, 14 (06): : 639 - 656
  • [12] Machine and deep learning-based wheat yield prediction: the critical role of soil moisture and remote sensing data
    Shayan Hosseinpour
    Hemmatollah Pirdashti
    Danial Hosseinpour
    Hesam Mousavi
    Saeed Mohammadpour
    Modeling Earth Systems and Environment, 2025, 11 (4)
  • [13] Estimation of wheat biophysical variables through UAV hyperspectral remote sensing using machine learning and radiative transfer models
    Sahoo, Rabi N.
    Rejith, R. G.
    Gakhar, Shalini
    Verrelst, Jochem
    Ranjan, Rajeev
    Kondraju, Tarun
    Meena, Mahesh C.
    Mukherjee, Joydeep
    Dass, Anchal
    Kumar, Sudhir
    Kumar, Mahesh
    Dhandapani, Raju
    Chinnusamy, Viswanathan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 221
  • [14] Using UAV Multispectral Remote Sensing with Appropriate Spatial Resolution and Machine Learning to Monitor Wheat Scab
    Zhu, Wenjing
    Feng, Zhankang
    Dai, Shiyuan
    Zhang, Pingping
    Wei, Xinhua
    AGRICULTURE-BASEL, 2022, 12 (11):
  • [15] Detecting Water Stress in Winter Wheat Based on Multifeature Fusion from UAV Remote Sensing and Stacking Ensemble Learning Method
    Zhao, He
    Wang, Jingjing
    Guo, Jiali
    Hui, Xin
    Wang, Yunling
    Cai, Dongyu
    Yan, Haijun
    REMOTE SENSING, 2024, 16 (21)
  • [16] Improving Wheat Yield Prediction with Multi-Source Remote Sensing Data and Machine Learning in Arid Regions
    Raza, Aamir
    Shahid, Muhammad Adnan
    Zaman, Muhammad
    Miao, Yuxin
    Huang, Yanbo
    Safdar, Muhammad
    Maqbool, Sheraz
    Muhammad, Nalain E.
    REMOTE SENSING, 2025, 17 (05)
  • [17] Drone remote sensing of wheat N using hyperspectral sensor and machine learning
    Rabi N. Sahoo
    R. G. Rejith
    Shalini Gakhar
    Rajeev Ranjan
    Mahesh C. Meena
    Abir Dey
    Joydeep Mukherjee
    Rajkumar Dhakar
    Abhishek Meena
    Anchal Daas
    Subhash Babu
    Pravin K. Upadhyay
    Kapila Sekhawat
    Sudhir Kumar
    Mahesh Kumar
    Viswanathan Chinnusamy
    Manoj Khanna
    Precision Agriculture, 2024, 25 : 704 - 728
  • [18] Drone remote sensing of wheat N using hyperspectral sensor and machine learning
    Sahoo, Rabi N.
    Rejith, R. G.
    Gakhar, Shalini
    Ranjan, Rajeev
    Meena, Mahesh C.
    Dey, Abir
    Mukherjee, Joydeep
    Dhakar, Rajkumar
    Meena, Abhishek
    Daas, Anchal
    Babu, Subhash
    Upadhyay, Pravin K.
    Sekhawat, Kapila
    Kumar, Sudhir
    Kumar, Mahesh
    Chinnusamy, Viswanathan
    Khanna, Manoj
    PRECISION AGRICULTURE, 2024, 25 (02) : 704 - 728
  • [19] Peanut yield prediction using remote sensing and machine learning approaches based on phenological characteristics
    Hou, Xuehui
    Zhang, Junyong
    Luo, Xiubin
    Zeng, Shiwei
    Lu, Yan
    Wei, Qinggang
    Liu, Jia
    Feng, Wenjie
    Li, Qiaoyu
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2025, 232
  • [20] Integrating Remote Sensing and Weather Variables for Mango Yield Prediction Using a Machine Learning Approach
    Torgbor, Benjamin Adjah
    Rahman, Muhammad Moshiur
    Brinkhoff, James
    Sinha, Priyakant
    Robson, Andrew
    REMOTE SENSING, 2023, 15 (12)