Bayesian diagnostics in a partially linear model with first-order autoregressive skew-normal errors

被引:1
|
作者
Liu, Yonghui [1 ]
Lu, Jiawei [1 ]
Paula, Gilberto A. [2 ]
Liu, Shuangzhe [3 ]
机构
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai, Peoples R China
[2] Univ Sao Paulo, Inst Math & Stat, Sao Paulo, Brazil
[3] Univ Canberra, Fac Sci & Technol, Canberra, Australia
关键词
Bayesian local influence method; Gibbs algorithm; Matrix differential calculus; Time series model; LOCAL INFLUENCE; DISTRIBUTIONS;
D O I
10.1007/s00180-024-01504-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies a Bayesian local influence method to detect influential observations in a partially linear model with first-order autoregressive skew-normal errors. This method appears suitable for small or moderate-sized data sets (n=200 similar to 400\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=200{\sim }400$$\end{document}) and overcomes some theoretical limitations, bridging the diagnostic gap for small or moderate-sized data in classical methods. The MCMC algorithm is employed for parameter estimation, and Bayesian local influence analysis is made using three perturbation schemes (priors, variances, and data) and three measurement scales (Bayes factor, phi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-divergence, and posterior mean). Simulation studies are conducted to validate the reliability of the diagnostics. Finally, a practical application uses data on the 1976 Los Angeles ozone concentration to further demonstrate the effectiveness of the diagnostics.
引用
收藏
页码:1021 / 1051
页数:31
相关论文
共 50 条
  • [1] Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors
    Clécio da Silva Ferreira
    Gilberto A. Paula
    Gustavo C. Lana
    Computational Statistics, 2022, 37 : 445 - 468
  • [2] Estimation and diagnostic for partially linear models with first-order autoregressive skew-normal errors
    da Silva Ferreira, Clecio
    Paula, Gilberto A.
    Lana, Gustavo C.
    COMPUTATIONAL STATISTICS, 2022, 37 (01) : 445 - 468
  • [3] Diagnostics on nonlinear model with scale mixtures of skew-normal and first-order autoregressive errors
    Cao, Chun-Zheng
    Lin, Jin-Guan
    Shi, Jian-Qing
    STATISTICS, 2014, 48 (05) : 1033 - 1047
  • [4] Partially linear models with p-order autoregressive skew-normal errors
    Ferreira, Clecio da Silva
    Montoril, Michel H.
    Paula, Gilberto A.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (04) : 792 - 806
  • [5] Diagnostics for a Linear Model with First-Order Autoregressive Symmetrical Errors
    Zhu, Xiao-Xin
    Zhu, Bin
    Cao, Chun-Zheng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (13) : 2335 - 2350
  • [6] Diagnostics for Linear Models with First-order Autoregressive Symmetrical Errors
    Cao, Chun-Zheng
    PROCEEDINGS OF THE 2010 INTERNATIONAL CONFERENCE ON APPLICATION OF MATHEMATICS AND PHYSICS, VOL 2: ADVANCES ON APPLIED MATHEMATICS AND COMPUTATION MATHEMATICS, 2010, : 295 - 298
  • [7] Partially linear models with first-order autoregressive symmetric errors
    Relvas, Carlos Eduardo M.
    Paula, Gilberto A.
    STATISTICAL PAPERS, 2016, 57 (03) : 795 - 825
  • [8] Partially linear models with first-order autoregressive symmetric errors
    Carlos Eduardo M. Relvas
    Gilberto A. Paula
    Statistical Papers, 2016, 57 : 795 - 825
  • [9] Estimation and diagnostic for single-index partially functional linear regression model with p-order autoregressive skew-normal errors
    Zhou, Lijie
    Wu, Liucang
    Yang, Bin
    AIMS MATHEMATICS, 2025, 10 (03): : 7022 - 7066
  • [10] Diagnostics for elliptical linear mixed models with first-order autoregressive errors
    Cao, Chun-Zheng
    Lin, Jin-Guan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (10) : 1281 - 1296