CVTNet: A Fusion of Convolutional Neural Networks and Vision Transformer for Wetland Mapping Using Sentinel-1 and Sentinel-2 Satellite Data

被引:8
|
作者
Marjani, Mohammad [1 ]
Mahdianpari, Masoud [1 ,2 ]
Mohammadimanesh, Fariba [2 ]
Gill, Eric W. [1 ]
机构
[1] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NF A1C 5S7, Canada
[2] C Core, St John, NF A1B 3X5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
attention mechanism (AM); convolutional neural network (CNN); deep learning (DL); vision transformer (ViT); wetland mapping; CLASSIFICATION; CNN; RECOGNITION; MISSION;
D O I
10.3390/rs16132427
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wetland mapping is a critical component of environmental monitoring, requiring advanced techniques to accurately represent the complex land cover patterns and subtle class differences innate in these ecosystems. This study aims to address these challenges by proposing CVTNet, a novel deep learning (DL) model that integrates convolutional neural networks (CNNs) and vision transformer (ViT) architectures. CVTNet uses channel attention (CA) and spatial attention (SA) mechanisms to enhance feature extraction from Sentinel-1 (S1) and Sentinel-2 (S2) satellite data. The primary goal of this model is to achieve a balanced trade-off between Precision and Recall, which is essential for accurate wetland mapping. The class-specific analysis demonstrated CVTNet's proficiency across diverse classes, including pasture, shrubland, urban, bog, fen, and water. Comparative analysis showed that CVTNet outperforms contemporary algorithms such as Random Forest (RF), ViT, multi-layer perceptron mixer (MLP-mixer), and hybrid spectral net (HybridSN) classifiers. Additionally, the attention mechanism (AM) analysis and sensitivity analysis highlighted the crucial role of CA, SA, and ViT in focusing the model's attention on critical regions, thereby improving the mapping of wetland regions. Despite challenges at class boundaries, particularly between bog and fen, and misclassifications of swamp pixels, CVTNet presents a solution for wetland mapping.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [32] EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
    Jung, Jungkyo
    Yun, Sang-Ho
    Xu, Jeri
    Xie, Boyi
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6875 - 6878
  • [33] META-LEARNING FOR WETLAND CLASSIFICATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 IMAGERY
    Jafarzadeh, Hamid
    Mahdianpari, Masoud
    Gill, Eric
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 47 - 52
  • [34] OPERATIVE MAPPING OF IRRIGATED AREAS USING SENTINEL-1 AND SENTINEL-2 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Zribi, Mehrez
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5796 - 5799
  • [35] PADDY FIELD MAPPING IN EASTERN PART OF ASIA USING SENTINEL-1 AND SENTINEL-2
    Inoue, Shimpei
    Ito, Akihiko
    Yonezawa, Chinatsu
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5171 - 5174
  • [36] Fusing Landsat-8, Sentinel-1, and Sentinel-2 Data for River Water Mapping Using Multidimensional Weighted Fusion Method
    Liu, Qihang
    Zhang, Shiqiang
    Wang, Ninglian
    Ming, Yisen
    Huang, Chang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] A Convolutional Neural Network Architecture for Sentinel-1 and AMSR2 Data Fusion
    Malmgren-Hansen, David
    Pedersen, Leif Toudal
    Nielsen, Allan Aasbjerg
    Kreiner, Matilde Brandt
    Saldo, Roberto
    Skriver, Henning
    Lavelle, John
    Buus-Hinkler, Jorgen
    Krane, Klaus Harnvig
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (03): : 1890 - 1902
  • [38] Cropping Pattern Mapping in an Agro-Natural Heterogeneous Landscape Using Sentinel-2 and Sentinel-1 Satellite Datasets
    Aduvukha, Grace Rebecca
    Abdel-Rahman, Elfatih M.
    Sichangi, Arthur W.
    Makokha, Godfrey Ouma
    Landmann, Tobias
    Mudereri, Bester Tawona
    Tonnang, Henri E. Z.
    Dubois, Thomas
    AGRICULTURE-BASEL, 2021, 11 (06):
  • [39] Mapping management intensity types in grasslands with synergistic use of Sentinel-1 and Sentinel-2 satellite images
    Bartold, Maciej
    Kluczek, Marcin
    Wroblewski, Konrad
    Dabrowska-Zielinska, Katarzyna
    Golinski, Piotr
    Golinska, Barbara
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [40] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196