High-performance textile-based triboelectric nanogenerators with damage insensitivity and shape tailorability

被引:6
|
作者
Yan, Jing [1 ]
Liu, Jingjing [1 ]
Li, Yafang [1 ]
Wang, Kaibo [1 ]
Kang, Weimin [1 ]
Yang, Guang [1 ]
机构
[1] Tiangong Univ, Natl Ctr Int Joint Res Separat Membranes, Sch Text Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Dual -faced triboelectric fabric; Knitting technology; Energy harvesting; Wearable technology;
D O I
10.1016/j.nanoen.2024.109675
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Textile-based triboelectric nanogenerators (TENGs) represent a groundbreaking advancement in the field of wearable technology for supplying sustainable energy. In this study, a knitted dual-faced textile-based TENGs was proposed to address the existing challenges of low energy output and poor wearability. The fabric, composed of polytetrafluoroethylene (PTFE) yarn and silver-plated yarn, features a unique intermeshed structure that enhances the corresponding TENG's output performance by increasing the contact area between the tribomaterial and electrode. Such textile-based TENG have demonstrated an ability to attain open-circuit voltage, short-circuit current, and power density up to 133.8 V, 21.9 mu A, and 0.53 W/m2, respectively. More importantly, the dual-faced triboelectric fabric exhibited exceptional damage insensitivity and shape tailorability, making it sustainable for long-term use in wearable devices. The textile-based TENG can power various microelectronic devices, including LED arrays and calculators, showcasing their potential as reliable energy sources for wearable electronics. Furthermore, a real-time wireless direction indication system integrated into a smart garment was developed, demonstrating the TENG's versatility in applications beyond energy harvesting, potentially in navigation assistance. The advent of the dual-faced triboelectric fabric signifies an important step forward in wearable technology, promising enhanced performance and expanded applications in both energy collection and sensing technology.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The unique dielectricity of inorganic perovskites toward high-performance triboelectric nanogenerators
    Wang, Yudi
    Duan, Jialong
    Yang, Xiya
    Liu, Liqiang
    Zhao, Leilei
    Tang, Qunwei
    NANO ENERGY, 2020, 69
  • [42] Metal Island Structure as a Power Booster for High-Performance Triboelectric Nanogenerators
    Ravichandran, Aravind Narain
    Ramuz, Marc
    Blayac, Sylvain
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (11)
  • [43] Synergetic effect of piezo-triboelectric mechanism for high-performance nanogenerators
    Tayyab, Muhammad
    Zhu, Zhiguo
    Lu, Hongyu
    Ma, Guanyu
    Abbasi, Nasir Mahmood
    Gu, Dawei
    Wu, Bo
    Joseph, Yvonne
    Gao, Deqing
    Wei, Huang
    NANO ENERGY, 2022, 104
  • [44] Corn Starch-Derived Gel for High-Performance Triboelectric Nanogenerators
    Kamilya, Tapas
    Shin, Jaehee
    Cho, Hanchul
    Park, Jinhyoung
    ACS APPLIED POLYMER MATERIALS, 2023, 6 (01) : 1006 - 1014
  • [45] Ultra-Flexible and Large-Area Textile-Based Triboelectric Nanogenerators with a Sandpaper-Induced Surface Microstructure
    Song, Jian
    Gao, Libo
    Tao, Xiaoming
    Li, Lixiao
    MATERIALS, 2018, 11 (11)
  • [46] High-Performance Transparent and Flexible Triboelectric Nanogenerators Based on PDMS-PTFE Composite Films
    Li, Gui-Zhong
    Wang, Gui-Gen
    Ye, Da-Ming
    Zhang, Xu-Wu
    Lin, Zhao-Qing
    Zhou, Hai-Ling
    Li, Fei
    Wang, Bao-Lin
    Han, Jie-Cai
    ADVANCED ELECTRONIC MATERIALS, 2019, 5 (04)
  • [47] Plasticizer structural effect for sustainable and high-performance PVC gel-based triboelectric nanogenerators
    Park, Hyosik
    Oh, Seung-Ju
    Kim, Mingyu
    Lee, Cheoljae
    Joo, Hyeonseo
    Bae, Jin Woo
    Lee, Ju-Hyuck
    NANO ENERGY, 2023, 114
  • [48] High-performance triboelectric nanogenerators based on TPU/mica nanofiber with enhanced tribo-positivity
    Li, Wenjian
    Lu, Liqiang
    Yan, Feng
    Palasantzas, George
    Loos, Katja
    Pei, Yutao
    NANO ENERGY, 2023, 114
  • [49] High-performance biodegradable triboelectric nanogenerators based on hydroxypropyl methylcellulose and zinc oxide hybrid composites
    Baburaj, Aiswarya
    Aliyana, Akshaya Kumar
    Kumar, S. K. Naveen
    Bairagi, Satyaranjan
    Kumar, Charchit
    Mulvihill, Daniel M.
    Stylios, George K.
    NANO ENERGY, 2024, 128
  • [50] High-Performance Droplet-Based Triboelectric Nanogenerators: A Comparison of Device Configuration and Operating Parameters
    Chaithaweep, Kanokwan
    Pharino, Utchawadee
    Pongampai, Satana
    Hajra, Sugato
    Kim, Hoe Joon
    Charoonsuk, Thitirat
    Maluangnont, Tosapol
    Sriphan, Saichon
    Vittayakorn, Naratip
    ADVANCED MATERIALS TECHNOLOGIES, 2025,