High-performance textile-based triboelectric nanogenerators with damage insensitivity and shape tailorability

被引:6
|
作者
Yan, Jing [1 ]
Liu, Jingjing [1 ]
Li, Yafang [1 ]
Wang, Kaibo [1 ]
Kang, Weimin [1 ]
Yang, Guang [1 ]
机构
[1] Tiangong Univ, Natl Ctr Int Joint Res Separat Membranes, Sch Text Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Dual -faced triboelectric fabric; Knitting technology; Energy harvesting; Wearable technology;
D O I
10.1016/j.nanoen.2024.109675
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Textile-based triboelectric nanogenerators (TENGs) represent a groundbreaking advancement in the field of wearable technology for supplying sustainable energy. In this study, a knitted dual-faced textile-based TENGs was proposed to address the existing challenges of low energy output and poor wearability. The fabric, composed of polytetrafluoroethylene (PTFE) yarn and silver-plated yarn, features a unique intermeshed structure that enhances the corresponding TENG's output performance by increasing the contact area between the tribomaterial and electrode. Such textile-based TENG have demonstrated an ability to attain open-circuit voltage, short-circuit current, and power density up to 133.8 V, 21.9 mu A, and 0.53 W/m2, respectively. More importantly, the dual-faced triboelectric fabric exhibited exceptional damage insensitivity and shape tailorability, making it sustainable for long-term use in wearable devices. The textile-based TENG can power various microelectronic devices, including LED arrays and calculators, showcasing their potential as reliable energy sources for wearable electronics. Furthermore, a real-time wireless direction indication system integrated into a smart garment was developed, demonstrating the TENG's versatility in applications beyond energy harvesting, potentially in navigation assistance. The advent of the dual-faced triboelectric fabric signifies an important step forward in wearable technology, promising enhanced performance and expanded applications in both energy collection and sensing technology.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] High-performance and robust biomimetic triboelectric nanogenerators for energy harvesting and self-powered wearable tactile sensing
    Tiwari, Manas
    Mudgal, Trapti
    Bharti, Deepak
    POLYMER, 2024, 308
  • [42] High performance triboelectric nanogenerators based on large-scale mass-fabrication technologies
    Zhang, Xiao-Sheng
    Han, Meng-Di
    Meng, Bo
    Zhang, Hai-Xia
    NANO ENERGY, 2015, 11 : 304 - 322
  • [43] Replacing the metal electrodes in triboelectric nanogenerators: High-performance laser-induced graphene electrodes
    Zhao, Pengfei
    Bhattacharya, Gourav
    Fishlock, Sam J.
    Guy, Joseph G. M.
    Kumar, Amit
    Tsonos, Christos
    Yu, Zidong
    Raj, Shasidran
    McLaughlin, James A.
    Luo, Jikui
    Soin, Navneet
    NANO ENERGY, 2020, 75 (75)
  • [44] High-performance triboelectric nanogenerators with laser-induced graphene pattern for efficient charge transfer
    Yan, Jing
    Wang, Haoxuan
    Wang, Xiyan
    Yang, Guang
    APPLIED SURFACE SCIENCE, 2024, 661
  • [45] Wheel-structured Triboelectric Nanogenerators with Hyperelastic Networking for High-Performance Wave Energy Harvesting
    Hu, Yuchen
    Qiu, Huijing
    Sun, Qijun
    Wang, Zhong Lin
    Xu, Liang
    SMALL METHODS, 2023, 7 (10):
  • [46] High-performance triboelectric nanogenerators based on Ag-doped ZnO loaded electrospun PVDF nanofiber mats for energy harvesting and healthcare monitoring
    Venkatesan, Hema Malini
    Arun, Anand Prabu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [47] High-Performance Triboelectric Nanogenerators Based on Foaming Agent-Modified Porous PDMS Films with Multiple Pore Sizes
    Zhang, Ping
    Ma, Yuting
    Zhang, Honghao
    Deng, Lu
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (12) : 6598 - 6606
  • [48] Hybrid All-in-One Power Source Based on High-Performance Spherical Triboelectric Nanogenerators for Harvesting Environmental Energy
    Xu, Lingyi
    Xu, Liang
    Luo, Jianjun
    Yan, Ying
    Jia, Bei-Er
    Yang, Xiaodan
    Gao, Yihua
    Wang, Zhong Lin
    ADVANCED ENERGY MATERIALS, 2020, 10 (36)
  • [49] Adaptive Ultra-Low Resilience Woven Triboelectric Nanogenerators for High-Performance Wearable Energy Harvesting and Motion Sensing
    So, Mei Yi
    Xu, Bingang
    SMALL, 2025,
  • [50] Omni-directional detectable textile brush-based triboelectric nanogenerators
    Komatsu, Tomohiro
    Nishikawa, Yukino
    Shima, Shota
    Uchiyama, Yuji
    Kobayashi, Eiichi
    Takamura, Eiichiro
    Sakamoto, Hiroaki
    SENSORS AND ACTUATORS A-PHYSICAL, 2022, 345