High-performance textile-based triboelectric nanogenerators with damage insensitivity and shape tailorability

被引:6
|
作者
Yan, Jing [1 ]
Liu, Jingjing [1 ]
Li, Yafang [1 ]
Wang, Kaibo [1 ]
Kang, Weimin [1 ]
Yang, Guang [1 ]
机构
[1] Tiangong Univ, Natl Ctr Int Joint Res Separat Membranes, Sch Text Sci & Engn, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Triboelectric nanogenerator; Dual -faced triboelectric fabric; Knitting technology; Energy harvesting; Wearable technology;
D O I
10.1016/j.nanoen.2024.109675
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Textile-based triboelectric nanogenerators (TENGs) represent a groundbreaking advancement in the field of wearable technology for supplying sustainable energy. In this study, a knitted dual-faced textile-based TENGs was proposed to address the existing challenges of low energy output and poor wearability. The fabric, composed of polytetrafluoroethylene (PTFE) yarn and silver-plated yarn, features a unique intermeshed structure that enhances the corresponding TENG's output performance by increasing the contact area between the tribomaterial and electrode. Such textile-based TENG have demonstrated an ability to attain open-circuit voltage, short-circuit current, and power density up to 133.8 V, 21.9 mu A, and 0.53 W/m2, respectively. More importantly, the dual-faced triboelectric fabric exhibited exceptional damage insensitivity and shape tailorability, making it sustainable for long-term use in wearable devices. The textile-based TENG can power various microelectronic devices, including LED arrays and calculators, showcasing their potential as reliable energy sources for wearable electronics. Furthermore, a real-time wireless direction indication system integrated into a smart garment was developed, demonstrating the TENG's versatility in applications beyond energy harvesting, potentially in navigation assistance. The advent of the dual-faced triboelectric fabric signifies an important step forward in wearable technology, promising enhanced performance and expanded applications in both energy collection and sensing technology.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators
    Zhao, Pengfei
    Soin, Navneet
    Prashanthi, Kovur
    Chen, Jinkai
    Dong, Shurong
    Zhou, Erping
    Zhu, Zhigang
    Narasimulu, Anand Arcot
    Montemagno, Carlo D.
    Yu, Liyang
    Luo, Jikui
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) : 5880 - 5891
  • [32] Harnessing Mechanical Energy for Green Hydrogen: Pioneering High-Performance Triboelectric Nanogenerators
    Gajula, Prasad
    Yoon, Jae Uk
    Woo, Insun
    Bae, Jin Woo
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [33] Enhancing the Performance of Textile Triboelectric Nanogenerators with Oblique Microrod Arrays for Wearable Energy Harvesting
    Zhang, Lu
    Su, Chen
    Cheng, Li
    Cui, Nuanyang
    Gu, Long
    Qin, Yong
    Yang, Rusen
    Zhou, Feng
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) : 26824 - 26829
  • [34] Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple "High-Entropy" Kinetic Energies
    Gang, Xuechao
    Guo, Zi Hao
    Cong, Zifeng
    Wang, Jing
    Chang, Caiyun
    Pan, Chongxiang
    Pu, Xiong
    Wang, Zhong Lin
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (17) : 20145 - 20152
  • [35] Electrifying waste textiles: Transforming fabric scraps into high-performance triboelectric nanogenerators for biomechanical energy harvesting
    Amini, Sebghatullah
    Ahmed, Rumana Farheen Sagade Muktar
    Kumar, Santosh
    Ankanathappa, Sangamesha Madanahalli
    Sannathammegowda, Krishnaveni
    WASTE MANAGEMENT, 2024, 190 : 477 - 485
  • [36] Influence of the Fabric Topology on the Performance of a Textile-Based Triboelectric Nanogenerator for Self-Powered Monitoring
    Somkuwar, Viraj U.
    Kumar, Bipin
    ACS APPLIED POLYMER MATERIALS, 2023, 5 (04) : 2323 - 2335
  • [37] Nature-inspired scalable high-performance triboelectric nanogenerators for energy harvesting and sensing
    Wang, Qian
    Xu, Bingang
    Tan, Di
    Hu, Xin
    Yang, Yujue
    Huang, Junxian
    Gao, Yuanyuan
    Liu, Xinlong
    NANO ENERGY, 2024, 121
  • [38] High-performance triboelectric nanogenerators boosted by synergistically aligned piezoelectric/conductive composite nanofibers
    Yan, Jing
    Zhang, Xiaojing
    Zhu, Ning
    Qin, Yuebin
    Yang, Guang
    POLYMER COMPOSITES, 2025, 46 (04) : 3228 - 3238
  • [39] Biodegradable, stretchable, and high-performance triboelectric nanogenerators through interfacial polarization in bilayer structure
    Park, Yong-Jin
    Kwak, Min Sub
    Kim, Yonggi
    Na, Sangyun
    Chang, Yoojin
    Kim, Young-Ryul
    Cho, Haryeong
    Lee, Seungjae
    Kim, Jae Joon
    Ko, Hyunhyub
    NANO ENERGY, 2024, 132
  • [40] Dual Friction Mode Textile-Based Tire Cord Triboelectric Nanogenerator
    Seung, Wanchul
    Yoon, Hong-Joon
    Kim, Tae Yun
    Kang, Minki
    Kim, Jihye
    Kim, Han
    Kim, Seong Min
    Kim, Sang-Woo
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (39)