Impacts of Soil Compaction and Phosphorus Levels on the Dynamics of Phosphate-Solubilizing and Nitrogen-Fixing Bacteria in the Peanut Rhizosphere

被引:0
|
作者
Wu, Qi [1 ]
Yang, Liyu [1 ]
Liang, Haiyan [1 ]
Liu, Miao [1 ]
Chen, Yinglong [2 ,3 ]
Chen, Dianxu [1 ]
Shen, Pu [1 ]
机构
[1] Shandong Acad Agr Sci, Shandong Peanut Res Inst, Chinese Natl Peanut Engn Res Ctr, Qingdao 266100, Peoples R China
[2] Univ Western Australia, Sch Agr & Environm, Perth, WA 6009, Australia
[3] Univ Western Australia, UWA Inst Agr, Perth, WA 6009, Australia
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 09期
基金
澳大利亚研究理事会;
关键词
phosphorus; soil compaction; phosphate-solubilizing bacteria; nitrogen-fixing bacteria; peanut; PLANT-GROWTH; ASSEMBLY PROCESSES; PH; AVAILABILITY; COOCCURRENCE; COMMUNITIES; METABOLISM; DIVERSITY; SELECTION; FIXATION;
D O I
10.3390/agronomy14091971
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Soil properties, including soil compaction and the nutrient content, influence the composition and functions of rhizosphere microbial communities. There is limited information on how soil compaction and phosphorus application affect phosphate-solubilizing (PSB) and nitrogen-fixing bacteria (NFB). This study aimed to examine the responses of PSB and NFB in the rhizosphere of peanut (Arachis hypogaea L.) plants under varying soil compaction and phosphorus application levels. To address this, pot experiments were conducted to assess the composition and assembly processes of rhizosphere PSB and NFB in peanut cultivar Hua Yu 22 under two soil compaction levels (T1, 1.25 g/cm3 compaction, and T2, 1.00 g/cm3 compaction) and two phosphorus (P) levels (P0, no P applied, and P1, 1.2 mM P/kg soil applied). The results showed that PSB community shifts were closely correlated with the content of soil available phosphorus, soil acid phosphatase activity, soil nitrogenase activity, and soil compaction. Additionally, the content of soil available phosphorus and soil compaction were correlated with changes in operational taxonomic units of NFB. A network analysis revealed that the complexities of PSB were significantly higher than those of NFB. A stronger negative relationship was identified among NFB communities. The assembly of PSB communities was primarily driven by drift processes, whereas NFB communities were influenced by a combination of homogenizing selection and drift. Both PSB and NFB community compositions were significantly affected by phosphorus limitations and soil compaction. These findings enhance our understanding of the impacts of soil compaction and phosphorus application on PSB and NFB communities, with implications for optimizing peanut crop production. Our results will provide reference for crop cultivation in compacted and low-phosphorus soils. The important phosphate-solubilizing and nitrogen-fixing bacteria screened in the interaction network in this study will become candidate microbial agents for alleviating soil compaction and low phosphorus levels.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity
    Beltran-Medina, Isidro
    Romero-Perdomo, Felipe
    Molano-Chavez, Lady
    Gutierrez, Angelica Y.
    Silva, Antonio M. M.
    Estrada-Bonilla, German
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 2023, 126 (01) : 21 - 34
  • [22] Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea
    Wani, Parvaze A.
    Khan, Mohammad Saghir
    Zaidi, Almas
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2007, 170 (02) : 283 - 287
  • [23] ISOLATION OF NITROGEN-FIXING BACTERIA FROM RICE RHIZOSPHERE SOIL AND RICE ROOT
    KARIM, NH
    ALIMIAH, S
    BANGLADESH JOURNAL OF BOTANY, 1982, 11 (01): : 77 - 78
  • [24] Soil phosphorus fractionation and its association with soil phosphate-solubilizing bacteria in a chronosequence of vegetation restoration
    Zhang, Yanlin
    Li, Ying
    Wang, Shuzhen
    Umbreen, Saima
    Zhou, Chuifan
    ECOLOGICAL ENGINEERING, 2021, 164
  • [25] Inoculation of phosphate-solubilizing bacteria Bacillus thuringiensis B1 increases available phosphorus and growth of peanut in acidic soil
    Wang, Tong
    Liu, Man-Qiang
    Li, Hui-Xin
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2014, 64 (03): : 252 - 259
  • [26] Earthworms and Phosphate-Solubilizing Bacteria Stimulate Nitrogen Storage and Cycling in a Manured Arid Soil
    Cheng, Xiong
    Zhang, Yu-Long
    Li, Wen-Yan
    Wang, Li-Ying
    Zhang, Hai-Chun
    Lu, Wei-Sheng
    Chen, Xiao-Yang
    Li, Yong-Tao
    Xu, Hui-Juan
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2019, 83 (01) : 153 - 162
  • [27] Phylogenetic diversity of nitrogen-fixing bacteria and the nifH gene from mangrove rhizosphere soil
    Liu, Jianyin
    Peng, Mengjun
    Li, Youguo
    CANADIAN JOURNAL OF MICROBIOLOGY, 2012, 58 (04) : 531 - 539
  • [28] Shift in the soil rhizobacterial community for enhanced solubilization and bioavailability of phosphorus in the rhizosphere of Allium hookeri Thwaites, through bioaugmentation of phosphate-solubilizing bacteria
    Kshetri, Lakshmibala
    Kotoky, Rhitu
    Debnath, Sourav
    Maheshwari, D. K.
    Pandey, Piyush
    3 BIOTECH, 2024, 14 (08)
  • [29] Phosphate-Solubilizing Bacteria Nullify the Antagonistic Effect of Soil Calcification on Bioavailability of Phosphorus in Alkaline Soils
    Muhammad Adnan
    Zahir Shah
    Shah Fahad
    Muhamamd Arif
    Mukhtar Alam
    Imtiaz Ali Khan
    Ishaq Ahmad Mian
    Abdul Basir
    Hidayat Ullah
    Muhammad Arshad
    Inayat-Ur Rahman
    Shah Saud
    Muhammad Zahid Ihsan
    Yousaf Jamal
    Hafiz Mohkum Amanullah
    Wajid Hammad
    Scientific Reports, 7
  • [30] Phosphate-Solubilizing Bacteria Nullify the Antagonistic Effect of Soil Calcification on Bioavailability of Phosphorus in Alkaline Soils
    Adnan, Muhammad
    Shah, Zahir
    Fahad, Shah
    Arif, Muhamamd
    Alam, Mukhtar
    Khan, Imtiaz Ali
    Mian, Ishaq Ahmad
    Basir, Abdul
    Ullah, Hidayat
    Arshad, Muhammad
    Inayat-ur-Rehman
    Saud, Shah
    Ihsan, Muhammad Zahid
    Jamal, Yousaf
    Amanullah
    Hammad, Hafiz Mohkum
    Nasim, Wajid
    SCIENTIFIC REPORTS, 2017, 7