Lie algebroid connections, twisted Higgs bundles and motives of moduli spaces

被引:2
|
作者
Alfaya, David [1 ,2 ]
Oliveira, Andre [3 ,4 ]
机构
[1] Comillas Pontif Univ, Dept Appl Math, ICAI Sch Engn, C Alberto Aguilera 25, Madrid 28015, Spain
[2] Comillas Pontif Univ, Inst Res Technol, ICAI Sch Engn, C Alberto Aguilera 25, Madrid 28015, Spain
[3] Univ Porto, Fac Ciencias, Ctr Matemat, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[4] Univ Tras Os Montes & Alto Douro UTAD, Dept Matemat, P-5000911 Vila Real, Portugal
关键词
Lie algebroid connections; Higgs bundles; Moduli space; Motive; Hodge structure; SURFACE GROUP-REPRESENTATIONS; FUNDAMENTAL GROUP; VECTOR-BUNDLES; COHOMOLOGY; EQUATIONS; DUALITY;
D O I
10.1016/j.geomphys.2024.105195
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = (L, [<middle dot> , <middle dot>], 8) be an algebraic Lie algebroid over a smooth projective curve X of genus g >= 2 such that L is a line bundle whose degree is less than 2 - 2g. Let r and d be coprime numbers. We prove that the motivic class of the moduli space of L-connections of rank r and degree d over X does not depend on the Lie algebroid structure [<middle dot> , <middle dot>] and 8 of L and neither on the line bundle L itself, but only on the degree of L (and of course on r, d and X). In particular it is equal to the motivic class of the moduli space of KX(D)-twisted Higgs bundles of rank r and degree d, for D any effective divisor with the appropriate degree. As a consequence, similar results (actually slightly stronger) are obtained for the corresponding E-polynomials. Some applications of these results are then deduced. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:55
相关论文
共 50 条
  • [1] MODULI SPACES OF LIE ALGEBROID CONNECTIONS
    Krizka, Libor
    ARCHIVUM MATHEMATICUM, 2008, 44 (05): : 403 - 418
  • [2] A remark on the relative Lie algebroid connections and their moduli spaces
    Manikandan, S.
    Singh, Anoop
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [3] Line bundles on the moduli space of Lie algebroid connections over a curve
    Biswas, Indranil
    Singh, Anoop
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [4] Motives of moduli spaces of rank 3 vector bundles and Higgs bundles on a curve
    Fu, Lie
    Hoskins, Victoria
    Lehalleur, Simon Pepin
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (01): : 66 - 89
  • [5] The intersection form on moduli spaces of twisted -Higgs bundles vanishes
    Heinloth, Jochen
    MATHEMATISCHE ANNALEN, 2016, 365 (3-4) : 1499 - 1526
  • [6] A remark on the moduli space of Lie algebroid λ-connections
    Keshari, Parul
    Singh, Anoop
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (06) : 2282 - 2297
  • [7] On the motives of moduli of chains and Higgs bundles
    Garcia-Prada, Oscar
    Heinloth, Jochen
    Schmitt, Alexander
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (12) : 2617 - 2668
  • [8] Motivic classes of moduli of Higgs bundles and moduli of bundles with connections
    Fedorov, Roman
    Soibelman, Alexander
    Soibelman, Yan
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2018, 12 (04) : 687 - 766
  • [9] Birationality of moduli spaces of twisted U(p, q)-Higgs bundles
    Gothen, Peter B.
    Nozad, Azizeh
    REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (01): : 91 - 128
  • [10] Geometry of moduli spaces of Higgs bundles
    Biswas, Indranil
    Schumacher, Georg
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2006, 14 (04) : 765 - 793