Parametric evaluation of the operating conditions for NO reduction in flameless combustion of an H2/NH3/N2 fuel mixture

被引:0
|
作者
Yu, Jiho [1 ,2 ]
Hong, Jongsup [1 ]
Lee, Youngjae [2 ]
机构
[1] Yonsei Univ, Dept Mech Engn, Yonsei Ro 50, Seoul, South Korea
[2] Korea Inst Ind Technol, Low Carbon Emiss Control R&D Dept, Yangdaegiro gi 89, Cheonan Si, Chungcheongnam, South Korea
关键词
Flameless combustion; Ammonia; Hydrogen; Operating condition; NO formation; LAMINAR BURNING VELOCITY; PREMIXED FLAMES; MARKSTEIN LENGTH; AMMONIA; HYDROGEN; PERFORMANCE; AIR;
D O I
10.1016/j.ijhydene.2024.05.432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The transition from hydrocarbon -based to carbon -free fuels is imperative owing to environmental concerns and stricter regulations. However, the combustion of hydrogen (H2) and ammonia (NH3) generates nitrogen oxide (NO) and faces operational constraints. Hence, technologies like flameless and moderate or intense low -oxygen dilution combustion are being explored to mitigate NO formation. This study analyzed flameless combustion of H2/NH3/N2 fuel mixture, assessing the impacts of varying fuel velocity, feed strategy, equivalence ratio, and O2 content on NO emissions. Using a laboratory -scale combustor, flameless combustion was achieved via controlled flow and internal recirculation. Lower fuel velocity improved combustor temperature uniformity and reduced NO emissions. Feeding NH3 separately decreased NO emissions compared to mixing it with fuel. Decreasing excess O2 enhanced temperature uniformity, suppressed fuel -NO formation, and reduced NO emissions. N2 dilution improved fuel -oxidizer mixing, enhancing temperature uniformity and reducing NO emissions, highlighting how parameter optimization enhances temperature uniformity and lowers NO emissions.
引用
收藏
页码:404 / 413
页数:10
相关论文
共 50 条
  • [1] Uncertainty quantification of the premixed combustion characteristics of NH3/H2/N2 fuel blends
    Soyler, Israfil
    Zhang, Kai
    Duwig, Christophe
    Jiang, Xi
    Karimi, Nader
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (38) : 14477 - 14491
  • [2] Effect of operating conditions on the characteristics of flameless CH4 and H2 combustion for primary NO reduction
    Yu, Jiho
    Park, Jinje
    Kim, Seongil
    Choi, Yongsup
    Lee, Sea-hoon
    Lee, Youngjae
    FUEL, 2024, 374
  • [3] Effect of diluent N2 addition on NH3/H2/air combustion characteristics
    Zuo, Shuangshuang
    Chen, Guoyan
    Zhang, Anchao
    Deng, Haoxin
    Wen, Xiaoping
    Wang, Fahui
    FUEL, 2023, 352
  • [4] EXPERIMENTAL AND NUMERICAL INVESTIGATION OF NH3/H2/N2 COMBUSTION IN A PREMIXED/STRATIFIED SWIRL BURNER
    Davies, Jordan
    Mazzotta, Luca
    Sato, Daisuke
    Mashruk, Syed
    Pugh, Daniel
    Borello, Domenico
    Medina, Agustin Valera
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 2, 2024,
  • [5] Composition and Injection Angle Effects on Combustion of an NH3/H2/N2 Jet in an Air Crossflow
    Cecere, Donato
    Cimini, Matteo
    Carpenella, Simone
    Caldarelli, Jan
    Giacomazzi, Eugenio
    ENERGIES, 2024, 17 (20)
  • [6] Experimental and Numerical Investigation of NH3/H2/N2 Combustion in a Premixed/Stratified Swirl Burner
    Davies, Jordan
    Mazzotta, Luca
    Sato, Daisuke
    Mashruk, Syed
    Pugh, Daniel
    Borello, Domenico
    Valera-Medina, Agustin
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2025, 147 (01):
  • [7] Chemical mechanism development and reduction for combustion of NH3/H2/CH4 mixtures
    Li, Rui
    Konnov, Alexander A.
    He, Guoqiang
    Qin, Fei
    Zhang, Duo
    FUEL, 2019, 257
  • [8] Analysis of low emission characteristics of NH3/H2/air mixtures under low temperature combustion conditions
    Xue, Yuan
    Zhang, Long
    Zhang, Shanshan
    Zhou, Hua
    Ren, Zhuyin
    FUEL, 2023, 337
  • [9] Combustion characteristics of NH3/H2/N2/air adopting the H2-assisted turbulent jet ignition
    Wang, Zhe
    Zhang, Tianyue
    Wang, Shuofeng
    Ji, Changwei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 78 : 83 - 91
  • [10] Effects of N2 2 dilution on NH3/H2/air 3 /H 2 /air combustion using turbulent jet ignition
    Wang, Zhe
    Zhang, Tianyue
    Yang, Haowen
    Wang, Shuofeng
    Ji, Changwei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 82 : 685 - 692