Experimental and numerical analysis of low-velocity impact and compression after impact responses of novel 3D hybrid composites

被引:4
|
作者
Wang, Ke [1 ]
Taheri, Farid [1 ]
机构
[1] Dalhousie Univ, Dept Mech Engn, Adv Compos & Mech Lab, Halifax, NS B3H 4R2, Canada
关键词
3DFML; 3D hybrid composites; Fiber metal laminate; Inserts enhanced; Fabrication method; Low-velocity impact; Compression after impact; Numerical simulation; Finite element; SANDWICH STRUCTURES; DELAMINATION; PANELS;
D O I
10.1016/j.compstruct.2024.118133
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Rising environmental concerns and the push to cut carbon emissions have resulted in increased incorporation of lightweight materials to improve fuel efficiency across industries. Fiber Metal Laminates (FMLs), known for superior properties, are widely used in aerospace. In the same vein, the recently developed 3D Fiber-Metal Laminates (3DFMLs) with a 3D composite core have been demonstrated to offer remarkable performance despite fabrication challenges. Two innovative 3D hybrid composites (3DFML-PI and 3DHC-PI) are introduced. These FMLs integrate plastic inserts to overcome the fabrication hurdles experienced by the original 3DFMLs and enhance their mechanical properties. Notably, 3DFML-PI shows comparatively an exceptional impact resistance with a higher perforation threshold, highlighting the efficacy of plastic inserts. Additionally, 3DFML-PI exhibits higher compressive strength, suggesting improved consolidation of the 3D composites. Comparison of the compression-after-impact (CAI) performances also underscores the advantages of high flexural stiffness and localized damage. The research justifies further exploration and implementation of these innovative materials in practical applications requiring lightweight materials with high specific strength, stiffness, impact resistance, and economic sustainability.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Thin/thick-ply hybrid gradient laminate for low-velocity impact and compression-after-impact behaviors
    Yuan, Yanan
    Li, Xinyue
    Zhang, Zuoqi
    Liu, Wei
    COMPOSITES COMMUNICATIONS, 2021, 25
  • [22] Experimental and Numerical Analysis of Carbon/Epoxy Composite Plate Subject to Low-Velocity Impact
    Suada, Muhamad Giri
    Syamsudin, Hendri
    Romadon, Haroen
    JOURNAL OF ENGINEERING AND TECHNOLOGICAL SCIENCES, 2022, 54 (02): : 270 - 286
  • [23] Low-velocity impact response of 3D braided composites by acoustic emission
    Yan, Shi
    Zhao, Jin-Yang
    Lu, Xia-Mei
    Zeng, Tao
    Cailiao Gongcheng/Journal of Materials Engineering, 2014, (07): : 92 - 97
  • [24] Micromechanisms and Characterization of Low-Velocity Impact Damage in 3D Woven Composites
    Sun, Jin
    Dai, Yunfeng
    Huang, Linhai
    Zhang, Diantang
    Zhao, Junhua
    MATERIALS, 2022, 15 (19)
  • [25] Experimental investigation on the low-velocity impact damage of 3D angle-interlock woven composites
    Yu, Lijuan
    Jin, Limin
    Niu, Zhilin
    Sun, Baozhong
    Zheng, Yizhu
    Chen, Jiping
    EMERGING MATERIALS AND MECHANICS APPLICATIONS, 2012, 487 : 793 - +
  • [26] An experimental investigation on the low-velocity impact behavior of 3D five-directional braided composites
    Yan, Shi
    Zhao, Jinyang
    Lu, Xiamei
    Zeng, Tao
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2014, 25 (12) : 1386 - 1390
  • [27] Experimental and Numerical Analysis of Lightweight Hybrid Composites Under Low Velocity Impact
    Maharshi, Kumar
    Patel, Shivdayal
    APPLIED COMPOSITE MATERIALS, 2024, 31 (04) : 1393 - 1412
  • [28] On multiple low-velocity impact response and compression after impact of composite laminates
    Hu, Peng
    Jian, Yue'ao
    Hu, Cheng
    Zhang, Nan
    Wang, Xinwei
    Cai, Deng'an
    Zhou, Guangming
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2025, 32 (06) : 1043 - 1057
  • [29] Multiscale numerical analysis and experimental investigation on low-velocity impact damage tolerance of 3D woven composite joints
    Li, Dinghe
    Xu, Meng
    Wan, Aoshuang
    Song, Xiaoxiao
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2025,
  • [30] Low-velocity impact response of 3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibres
    Wang, Caizheng
    Su, Dandan
    Xie, Zhifeng
    Zhang, Ke
    Wu, Ning
    Han, Meiyue
    Zhou, Ming
    POLYMER TESTING, 2021, 101