Experimental and numerical analysis of low-velocity impact and compression after impact responses of novel 3D hybrid composites

被引:4
|
作者
Wang, Ke [1 ]
Taheri, Farid [1 ]
机构
[1] Dalhousie Univ, Dept Mech Engn, Adv Compos & Mech Lab, Halifax, NS B3H 4R2, Canada
关键词
3DFML; 3D hybrid composites; Fiber metal laminate; Inserts enhanced; Fabrication method; Low-velocity impact; Compression after impact; Numerical simulation; Finite element; SANDWICH STRUCTURES; DELAMINATION; PANELS;
D O I
10.1016/j.compstruct.2024.118133
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Rising environmental concerns and the push to cut carbon emissions have resulted in increased incorporation of lightweight materials to improve fuel efficiency across industries. Fiber Metal Laminates (FMLs), known for superior properties, are widely used in aerospace. In the same vein, the recently developed 3D Fiber-Metal Laminates (3DFMLs) with a 3D composite core have been demonstrated to offer remarkable performance despite fabrication challenges. Two innovative 3D hybrid composites (3DFML-PI and 3DHC-PI) are introduced. These FMLs integrate plastic inserts to overcome the fabrication hurdles experienced by the original 3DFMLs and enhance their mechanical properties. Notably, 3DFML-PI shows comparatively an exceptional impact resistance with a higher perforation threshold, highlighting the efficacy of plastic inserts. Additionally, 3DFML-PI exhibits higher compressive strength, suggesting improved consolidation of the 3D composites. Comparison of the compression-after-impact (CAI) performances also underscores the advantages of high flexural stiffness and localized damage. The research justifies further exploration and implementation of these innovative materials in practical applications requiring lightweight materials with high specific strength, stiffness, impact resistance, and economic sustainability.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Experimental and Numerical Study of Multi-Energy Low-Velocity Impact and Compression-After-Impact Damage Mechanism of 3D Woven Composites
    Ying, Zhiping
    Sun, Xueyan
    Wang, Weiqing
    Wu, Zhenyu
    Cheng, Xiaoying
    Shi, Lin
    FIBERS AND POLYMERS, 2025, 26 (03) : 1349 - 1367
  • [2] Experimental and Numerical Study of Multi-Energy Low-Velocity Impact and Compression-After-Impact Damage Mechanism of 3D Woven Composites
    Zhiping Ying
    Xueyan Sun
    Weiqing Wang
    Zhenyu Wu
    Xiaoying Cheng
    Lin Shi
    Fibers and Polymers, 2025, 26 (3) : 1349 - 1367
  • [3] Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact
    Thorsson, Solver I.
    Sringeri, Sunil P.
    Waas, Anthony M.
    Justusson, Brian P.
    Rassaian, Mostafa
    COMPOSITE STRUCTURES, 2018, 186 : 335 - 346
  • [4] Effect of off-axis angle on low-velocity impact and compression after impact damage mechanisms of 3D woven composites
    Zhang, Diantang
    Gu, Yuanhui
    Zhang, Zhongwei
    Jia, Minghao
    Yue, Songlin
    Li, Gan
    MATERIALS & DESIGN, 2020, 192
  • [5] Modelling low-velocity impact damage and compression after impact of 3D woven structures considering compaction
    Millen, S. L. J.
    Dahale, M.
    Fisher, T.
    Samy, A.
    Thompson, K.
    Ramaswamy, K.
    Ralph, C.
    Archer, E.
    McIlhagger, A.
    Ullah, Z.
    Falzon, B. G.
    COMPOSITE STRUCTURES, 2023, 318
  • [6] Low-velocity impact and compression after impact behaviour of nanoparticles modified polymer composites
    Elamvazhudi, B.
    Gopalakannan, S.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024, 43 (23-24) : 1340 - 1355
  • [7] Adaptive Multi-Fidelity (AMF) modelling of damage in composites under Low-Velocity impact and compression after impact
    Leong, K. H.
    Zhi, J.
    Tan, V. B. C.
    Lee, H. P.
    Tay, T. E.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2024, 178
  • [8] Experimental Investigation on Low-Velocity Impact Performance of 3D Woven Textile Composites
    Yajun Liu
    Hong Xia
    Qing-Qing Ni
    Applied Composite Materials, 2022, 29 : 121 - 146
  • [9] Experimental Investigation on Low-Velocity Impact Performance of 3D Woven Textile Composites
    Liu, Yajun
    Xia, Hong
    Ni, Qing-Qing
    APPLIED COMPOSITE MATERIALS, 2022, 29 (01) : 121 - 146
  • [10] Low-velocity impact and compression after impact modeling of composites using modified mesoscale model
    Rajaneesh, A.
    Bruyneel, M.
    COMPOSITE STRUCTURES, 2023, 311