Automated kharif rice mapping using SAR data and machine learning techniques in GEE platform

被引:0
|
作者
Vyas, Saurabh P. [1 ]
Kumar, Mukesh [2 ]
Kathiria, Dhaval [1 ]
Jani, Mandakini [1 ]
Pandya, Mehul R. [2 ]
Bhattacharya, Bimal K. [2 ]
机构
[1] Anand Agr Univ, Coll Agr Informat Technol, Anand 388110, India
[2] Indian Space Res Org, Space Applicat Ctr, Ahmadabad 380058, India
来源
CURRENT SCIENCE | 2024年 / 126卷 / 10期
关键词
Google earth engine; large-scale rice mapping; machine learning; multi-temporal; SAR; LAND-COVER; CLASSIFICATION; PADDY; EXTRACTION; CROPS;
D O I
10.18520/cs/v126/i10/1265-1272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study employs temporal C -band Sentinel -1 synthetic aperture radar (SAR) data within the Google Earth Engine (GEE) platform to evaluate discriminability and estimate acreage of kharif rice across major Indian states. Utilizing multi -temporal Sentinel -1 Cband SAR data, including time -series cross -polarization vertical-horizontal channels, the research spanned states such as Punjab, Haryana, Uttar Pradesh, Madhya Pradesh, Bihar, Jharkhand, Chhattisgarh, Telangana, Andhra Pradesh, West Bengal, Odisha and Assam. Employing five machine learning algorithms on GEE, with random forest demonstrating high performance, achieved 98.59% accuracy and 0.92 kappa coefficient ( kappa ) in Odisha. Subsequently, the RF algorithm was applied for kharif rice acreage estimation, yielding overall accuracies from 88.48% to 97.28% and kappa between 0.87 and 0.96 with deviations from reported acreage ranging from 0.95% to 12% across diverse states. The study underscores the efficacy of SAR data and machine learning within GEE for precise large-scale automated mapping of kharif rice.
引用
收藏
页码:1265 / 1272
页数:8
相关论文
共 50 条
  • [41] Imbalanced data preprocessing techniques for machine learning: a systematic mapping study
    Vitor Werner de Vargas
    Jorge Arthur Schneider Aranda
    Ricardo dos Santos Costa
    Paulo Ricardo da Silva Pereira
    Jorge Luis Victória Barbosa
    Knowledge and Information Systems, 2023, 65 : 31 - 57
  • [42] Using remote sensing data for geological mapping in semi-arid environment: a machine learning approach
    El Alaoui El Fels, Abdelhafid
    El Ghorfi, Mustapha
    EARTH SCIENCE INFORMATICS, 2022, 15 (01) : 485 - 496
  • [43] Automated identification of callbacks in Android framework using machine learning techniques
    Chen X.
    Mu R.
    Yan Y.
    Chen, Xiupeng (chenxiupeng@ime.ac.cn), 2018, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (10) : 301 - 312
  • [44] Rice Grain Classification using Image Processing & Machine Learning Techniques
    Arora, Biren
    Bhagat, Nimisha
    Arcot, Sonali
    Saritha, L. R.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 205 - 208
  • [45] Application of machine learning techniques in rice leaf disease detection
    Pallathadka, Harikumar
    Ravipati, Pavankumar
    Sajja, Guna Sekhar
    Phasinam, Khongdet
    Kassanuk, Thanwamas
    Sanchez, Domenic T.
    Prabhu, P.
    MATERIALS TODAY-PROCEEDINGS, 2022, 51 : 2277 - 2280
  • [46] Automated Mapping of Antarctic Supraglacial Lakes Using a Machine Learning Approach
    Dirscherl, Mariel
    Dietz, Andreas J.
    Kneisel, Christof
    Kuenzer, Claudia
    REMOTE SENSING, 2020, 12 (07)
  • [47] Automated identification of callbacks in Android framework using machine learning techniques
    Chen, Xiupeng
    Mu, Rongzeng
    Yan, Yuepeng
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2018, 10 (04) : 301 - 312
  • [48] Badland erosion susceptibility mapping using machine learning data mining techniques, Firozkuh watershed, Iran
    Majid Mohammady
    Natural Hazards, 2023, 117 : 703 - 721
  • [49] An automated sample generation method by integrating phenology domain optical-SAR features in rice cropping pattern mapping
    Yang, Jingya
    Hu, Qiong
    Li, Wenjuan
    Song, Qian
    Cai, Zhiwen
    Zhang, Xinyu
    Wei, Haodong
    Wu, Wenbin
    REMOTE SENSING OF ENVIRONMENT, 2024, 314
  • [50] An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques
    Sraitih, Mohamed
    Jabrane, Younes
    Hajjam El Hassani, Amir
    JOURNAL OF CLINICAL MEDICINE, 2021, 10 (22)