Automated kharif rice mapping using SAR data and machine learning techniques in GEE platform

被引:0
|
作者
Vyas, Saurabh P. [1 ]
Kumar, Mukesh [2 ]
Kathiria, Dhaval [1 ]
Jani, Mandakini [1 ]
Pandya, Mehul R. [2 ]
Bhattacharya, Bimal K. [2 ]
机构
[1] Anand Agr Univ, Coll Agr Informat Technol, Anand 388110, India
[2] Indian Space Res Org, Space Applicat Ctr, Ahmadabad 380058, India
来源
CURRENT SCIENCE | 2024年 / 126卷 / 10期
关键词
Google earth engine; large-scale rice mapping; machine learning; multi-temporal; SAR; LAND-COVER; CLASSIFICATION; PADDY; EXTRACTION; CROPS;
D O I
10.18520/cs/v126/i10/1265-1272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study employs temporal C -band Sentinel -1 synthetic aperture radar (SAR) data within the Google Earth Engine (GEE) platform to evaluate discriminability and estimate acreage of kharif rice across major Indian states. Utilizing multi -temporal Sentinel -1 Cband SAR data, including time -series cross -polarization vertical-horizontal channels, the research spanned states such as Punjab, Haryana, Uttar Pradesh, Madhya Pradesh, Bihar, Jharkhand, Chhattisgarh, Telangana, Andhra Pradesh, West Bengal, Odisha and Assam. Employing five machine learning algorithms on GEE, with random forest demonstrating high performance, achieved 98.59% accuracy and 0.92 kappa coefficient ( kappa ) in Odisha. Subsequently, the RF algorithm was applied for kharif rice acreage estimation, yielding overall accuracies from 88.48% to 97.28% and kappa between 0.87 and 0.96 with deviations from reported acreage ranging from 0.95% to 12% across diverse states. The study underscores the efficacy of SAR data and machine learning within GEE for precise large-scale automated mapping of kharif rice.
引用
收藏
页码:1265 / 1272
页数:8
相关论文
共 50 条
  • [31] Detecting Coseismic Landslides in GEE Using Machine Learning Algorithms on Combined Optical and Radar Imagery
    Peters, Stefan
    Liu, Jixue
    Keppel, Gunnar
    Wendleder, Anna
    Xu, Peiliang
    REMOTE SENSING, 2024, 16 (10)
  • [32] Mapping of hyperspectral AVIRIS data using machine-learning algorithms
    Waske, Bjorn
    Benediktsson, Jon Atli
    Arnason, Kolbeinn
    Sveinsson, Johannes R.
    CANADIAN JOURNAL OF REMOTE SENSING, 2009, 35 : S106 - S116
  • [33] Automated Trading with Machine Learning on Big Data
    Ruta, Dymitr
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 824 - 830
  • [34] Retrieval of similar objects in simulation data using machine learning techniques
    Cantú-Paz, E
    Cheunga, SCS
    Kamath, C
    IMAGE PROCESSING: ALGORITHMS AND SYSTEMS III, 2004, 5298 : 251 - 258
  • [35] Meteorological Data Based Detection of Stroke Using Machine Learning Techniques
    Marc, Anastasia-Daria
    Ploscar, Andreea Alina
    Coroiu, Adriana Mihaela
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT VIII, 2024, 15023 : 103 - 115
  • [36] Data Balancing Techniques for Predicting Student Dropout Using Machine Learning
    Mduma, Neema
    DATA, 2023, 8 (03)
  • [37] Mapping and Quantifying the Human-Environment Interactions in Middle Egypt Using Machine Learning and Satellite Data Fusion Techniques
    Blasco, Jose Manuel Delgado
    Cian, Fabio
    Hanssen, Ramon E.
    Verstraeten, Gert
    REMOTE SENSING, 2020, 12 (03)
  • [38] Imbalanced data preprocessing techniques for machine learning: a systematic mapping study
    de Vargas, Vitor Werner
    Schneider Aranda, Jorge Arthur
    Costa, Ricardo dos Santos
    da Silva Pereira, Paulo Ricardo
    Victoria Barbosa, Jorge Luis
    KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (01) : 31 - 57
  • [39] Customer churn prediction in telecom using machine learning in big data platform
    Ahmad, Abdelrahim Kasem
    Jafar, Assef
    Aljoumaa, Kadan
    JOURNAL OF BIG DATA, 2019, 6 (01)
  • [40] Customer churn prediction in telecom using machine learning in big data platform
    Abdelrahim Kasem Ahmad
    Assef Jafar
    Kadan Aljoumaa
    Journal of Big Data, 6