Automated kharif rice mapping using SAR data and machine learning techniques in GEE platform

被引:0
|
作者
Vyas, Saurabh P. [1 ]
Kumar, Mukesh [2 ]
Kathiria, Dhaval [1 ]
Jani, Mandakini [1 ]
Pandya, Mehul R. [2 ]
Bhattacharya, Bimal K. [2 ]
机构
[1] Anand Agr Univ, Coll Agr Informat Technol, Anand 388110, India
[2] Indian Space Res Org, Space Applicat Ctr, Ahmadabad 380058, India
来源
CURRENT SCIENCE | 2024年 / 126卷 / 10期
关键词
Google earth engine; large-scale rice mapping; machine learning; multi-temporal; SAR; LAND-COVER; CLASSIFICATION; PADDY; EXTRACTION; CROPS;
D O I
10.18520/cs/v126/i10/1265-1272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study employs temporal C -band Sentinel -1 synthetic aperture radar (SAR) data within the Google Earth Engine (GEE) platform to evaluate discriminability and estimate acreage of kharif rice across major Indian states. Utilizing multi -temporal Sentinel -1 Cband SAR data, including time -series cross -polarization vertical-horizontal channels, the research spanned states such as Punjab, Haryana, Uttar Pradesh, Madhya Pradesh, Bihar, Jharkhand, Chhattisgarh, Telangana, Andhra Pradesh, West Bengal, Odisha and Assam. Employing five machine learning algorithms on GEE, with random forest demonstrating high performance, achieved 98.59% accuracy and 0.92 kappa coefficient ( kappa ) in Odisha. Subsequently, the RF algorithm was applied for kharif rice acreage estimation, yielding overall accuracies from 88.48% to 97.28% and kappa between 0.87 and 0.96 with deviations from reported acreage ranging from 0.95% to 12% across diverse states. The study underscores the efficacy of SAR data and machine learning within GEE for precise large-scale automated mapping of kharif rice.
引用
收藏
页码:1265 / 1272
页数:8
相关论文
共 50 条
  • [21] Harnessing Machine Learning Techniques for Mapping Aquaculture Waterbodies in Bangladesh
    Ferriby, Hannah
    Nejadhashemi, Amir Pouyan
    Hernandez-Suarez, Juan Sebastian
    Moore, Nathan
    Kpodo, Josue
    Kropp, Ian
    Eeswaran, Rasu
    Belton, Ben
    Haque, Mohammad Mahfujul
    REMOTE SENSING, 2021, 13 (23)
  • [22] Regional Mapping of Vineyards Using Machine Learning and LiDAR Data
    Prins, Adriaan Jacobus
    Van Niekerk, Adriaan
    INTERNATIONAL JOURNAL OF APPLIED GEOSPATIAL RESEARCH, 2020, 11 (04) : 1 - 22
  • [23] Paddy Rice Mapping in Hainan Island Using Time-Series Sentinel-1 SAR Data and Deep Learning
    Shen, Guozhuang
    Liao, Jingjuan
    REMOTE SENSING, 2025, 17 (06)
  • [24] A Comparison of Resampling Techniques for Medical Data Using Machine Learning
    Alahmari, Fahad
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2020, 19 (01)
  • [25] ML-CASCADE: A machine learning and cloud computing-based tool for rapid and automated mapping of landslides using earth observation data
    Sharma, Nirdesh
    Saharia, Manabendra
    LANDSLIDES, 2025, 22 (01) : 31 - 43
  • [26] Construction Model Using Machine Learning Techniques for the Prediction of Rice Produce for Farmers
    Inyaem, Uraiwan
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 870 - 874
  • [27] Fine classification of rice paddy using multitemporal compact polarimetric SAR C band data based on machine learning methods
    Guo, Xianyu
    Yin, Junjun
    Li, Kun
    Yang, Jian
    Zou, Huimin
    Yang, Fukun
    FRONTIERS OF EARTH SCIENCE, 2024, 18 (01) : 30 - 43
  • [28] Automated Grading of Angelica sinensis Using Computer Vision and Machine Learning Techniques
    Zhang, Zimei
    Xiao, Jianwei
    Wang, Wenjie
    Zielinska, Magdalena
    Wang, Shanyu
    Liu, Ziliang
    Zheng, Zhian
    AGRICULTURE-BASEL, 2024, 14 (03):
  • [29] Flood susceptibility mapping using machine learning boosting algorithms techniques in Idukki district of Kerala India
    Saravanan, Subbarayan
    Abijith, Devanantham
    Reddy, Nagireddy Masthan
    Parthasarathy, K. S. S.
    Janardhanam, Niraimathi
    Sathiyamurthi, Subbarayan
    Sivakumar, Vivek
    URBAN CLIMATE, 2023, 49
  • [30] Big Data Platform Configuration Using Machine Learning
    Yeh, Chao-Chun
    Lu, Han-Lin
    Zhou, Jiazheng
    Chang, Sheng-An
    Lin, Xuan-Yi
    Sun, Yi-Chiao
    Huang, Shih-Kun
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (03) : 469 - 493