Automated kharif rice mapping using SAR data and machine learning techniques in GEE platform

被引:0
作者
Vyas, Saurabh P. [1 ]
Kumar, Mukesh [2 ]
Kathiria, Dhaval [1 ]
Jani, Mandakini [1 ]
Pandya, Mehul R. [2 ]
Bhattacharya, Bimal K. [2 ]
机构
[1] Anand Agr Univ, Coll Agr Informat Technol, Anand 388110, India
[2] Indian Space Res Org, Space Applicat Ctr, Ahmadabad 380058, India
来源
CURRENT SCIENCE | 2024年 / 126卷 / 10期
关键词
Google earth engine; large-scale rice mapping; machine learning; multi-temporal; SAR; LAND-COVER; CLASSIFICATION; PADDY; EXTRACTION; CROPS;
D O I
10.18520/cs/v126/i10/1265-1272
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The present study employs temporal C -band Sentinel -1 synthetic aperture radar (SAR) data within the Google Earth Engine (GEE) platform to evaluate discriminability and estimate acreage of kharif rice across major Indian states. Utilizing multi -temporal Sentinel -1 Cband SAR data, including time -series cross -polarization vertical-horizontal channels, the research spanned states such as Punjab, Haryana, Uttar Pradesh, Madhya Pradesh, Bihar, Jharkhand, Chhattisgarh, Telangana, Andhra Pradesh, West Bengal, Odisha and Assam. Employing five machine learning algorithms on GEE, with random forest demonstrating high performance, achieved 98.59% accuracy and 0.92 kappa coefficient ( kappa ) in Odisha. Subsequently, the RF algorithm was applied for kharif rice acreage estimation, yielding overall accuracies from 88.48% to 97.28% and kappa between 0.87 and 0.96 with deviations from reported acreage ranging from 0.95% to 12% across diverse states. The study underscores the efficacy of SAR data and machine learning within GEE for precise large-scale automated mapping of kharif rice.
引用
收藏
页码:1265 / 1272
页数:8
相关论文
共 30 条
[21]   Towards an Operational SAR-Based Rice Monitoring System in Asia: Examples from 13 Demonstration Sites across Asia in the RIICE Project [J].
Nelson, Andrew ;
Setiyono, Tri ;
Rala, Arnel B. ;
Quicho, Emma D. ;
Raviz, Jeny V. ;
Abonete, Prosperidad J. ;
Maunahan, Aileen A. ;
Garcia, Cornelia A. ;
Bhatti, Hannah Zarah M. ;
Villano, Lorena S. ;
Thongbai, Pongmanee ;
Holecz, Francesco ;
Barbieri, Massimo ;
Collivignarelli, Francesco ;
Gatti, Luca ;
Quilang, Eduardo Jimmy P. ;
Mabalay, Mary Rose O. ;
Mabalot, Pristine E. ;
Barroga, Mabel I. ;
Bacong, Alfie P. ;
Detoito, Norlyn T. ;
Berja, Glorie Belle ;
Varquez, Frenciso ;
Wahyunto ;
Kuntjoro, Dwi ;
Murdiyati, Retno ;
Pazhanivelan, Sellaperumal ;
Kannan, Pandian ;
Mary, Petchimuthu Christy Nirmala ;
Subramanian, Elangovan ;
Rakwatin, Preesan ;
Intrman, Amornrat ;
Setapayak, Thana ;
Lertna, Sommai ;
Vo Quang Minh ;
Vo Quoc Tuan ;
Trinh Hoang Duong ;
Nguyen Huu Quyen ;
Duong Van Kham ;
Hin, Sarith ;
Veasna, Touch ;
Yadav, Manoj ;
Chin, Chharom ;
Nguyen Hong Ninh .
REMOTE SENSING, 2014, 6 (11) :10773-10812
[22]   Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines [J].
Nguyen-Thanh Son ;
Chen, Chi-Farn ;
Chen, Cheng-Ru ;
Vo-Quang Minh .
GEOCARTO INTERNATIONAL, 2018, 33 (06) :587-601
[23]   Evaluation of RADARSAT Standard Beam data for identification of potato and rice crops in India [J].
Panigrahy, S ;
Manjunath, KR ;
Chakraborty, M ;
Kundu, N ;
Parihar, JS .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 1999, 54 (04) :254-262
[24]   Mapping of rice growth phases and bare land using Landsat-8 OLI with machine learning [J].
Ramadhani, Fadhlullah ;
Pullanagari, Reddy ;
Kereszturi, Gabor ;
Procter, Jonathan .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (21) :8428-8452
[25]  
Ranjan AK, 2019, SPAT INF RES, V27, P399
[26]  
Sobue S., 2014, J. Remote Sensing Soc. Jpn., V34, P314
[27]   Potential of C-band Synthetic Aperture Radar Sentinel-1 time-series for the monitoring of phenological cycles in a deciduous forest [J].
Soudani, Kamel ;
Delpierre, Nicolas ;
Berveiller, Daniel ;
Hmimina, Gabriel ;
Vincent, Gaelle ;
Morfin, Alexandre ;
Dufrene, Eric .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 104
[28]   Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+ data [J].
Tatsumi, Kenichi ;
Yamashiki, Yosuke ;
Canales Torres, Miguel Angel ;
Ramos Taipe, Cayo Leonidas .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2015, 115 :171-179
[29]   Global 10 m Land Use Land Cover Datasets: A Comparison of Dynamic World, World Cover and Esri Land Cover [J].
Venter, Zander S. ;
Barton, David N. ;
Chakraborty, Tirthankar ;
Simensen, Trond ;
Singh, Geethen .
REMOTE SENSING, 2022, 14 (16)
[30]   A support vector machine to identify irrigated crop types using time-series Landsat NDVI data [J].
Zheng, Baojuan ;
Myint, Soe W. ;
Thenkabail, Prasad S. ;
Aggarwal, Rimjhim M. .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 34 :103-112