Deep-Reinforcement-Learning-Based Collision Avoidance of Autonomous Driving System for Vulnerable Road User Safety

被引:2
|
作者
Chen, Haochong [1 ]
Cao, Xincheng [1 ]
Guvenc, Levent [1 ]
Aksun-Guvenc, Bilin [1 ]
机构
[1] Ohio State Univ, Automated Driving Lab, Columbus, OH 43212 USA
基金
美国安德鲁·梅隆基金会;
关键词
autonomous driving system; deep reinforcement learning; collision avoidance;
D O I
10.3390/electronics13101952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The application of autonomous driving system (ADS) technology can significantly reduce potential accidents involving vulnerable road users (VRUs) due to driver error. This paper proposes a novel hierarchical deep reinforcement learning (DRL) framework for high-performance collision avoidance, which enables the automated driving agent to perform collision avoidance maneuvers while maintaining appropriate speeds and acceptable social distancing. The novelty of the DRL method proposed here is its ability to accommodate dynamic obstacle avoidance, which is necessary as pedestrians are moving dynamically in their interactions with nearby ADSs. This is an improvement over existing DRL frameworks that have only been developed and demonstrated for stationary obstacle avoidance problems. The hybrid A* path searching algorithm is first applied to calculate a pre-defined path marked by waypoints, and a low-level path-following controller is used under cases where no VRUs are detected. Upon detection of any VRUs, however, a high-level DRL collision avoidance controller is activated to prompt the vehicle to either decelerate or change its trajectory to prevent potential collisions. The CARLA simulator is used to train the proposed DRL collision avoidance controller, and virtual raw sensor data are utilized to enhance the realism of the simulations. The model-in-the-loop (MIL) methodology is utilized to assess the efficacy of the proposed DRL ADS routine. In comparison to the traditional DRL end-to-end approach, which combines high-level decision making with low-level control, the proposed hierarchical DRL agents demonstrate superior performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Hybrid Reinforcement Learning-Based Collision Avoidance Algorithm for Autonomous Vehicle Clusters
    Guo, Chubing
    Wu, Jianshe
    Luo, Panzheng
    Wang, Zhigang
    Zhang, Kai
    Yang, Ziyi
    Dou, Zengfa
    Song, Kan
    IEEE ACCESS, 2025, 13 : 61564 - 61577
  • [42] Deep reinforcement learning with dynamic window approach based collision avoidance path planning for maritime autonomous surface ships
    Wu, Chuanbo
    Yu, Wangneng
    Li, Guangze
    Liao, Weiqiang
    OCEAN ENGINEERING, 2023, 284
  • [43] COLREGs-compliant multiship collision avoidance based on deep reinforcement learning
    Zhao, Luman
    Roh, Myung-Il
    OCEAN ENGINEERING, 2019, 191
  • [44] Research on Method of Collision Avoidance Planning for UUV Based on Deep Reinforcement Learning
    Gao, Wei
    Han, Mengxue
    Wang, Zhao
    Deng, Lihui
    Wang, Hongjian
    Ren, Jingfei
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (12)
  • [45] Collision avoidance for AGV based on deep reinforcement learning in complex dynamic environment
    Cai Z.
    Hu Y.
    Wen J.
    Zhang L.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (01): : 236 - 245
  • [46] Collision Detection and Avoidance for Multi-UAV based on Deep Reinforcement Learning
    Wang, Guanzheng
    Liu, Zhihong
    Xiao, Kun
    Xu, Yinbo
    Yang, Lingjie
    Wang, Xiangke
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 7783 - 7789
  • [47] Research on MASS Collision Avoidance in Complex Waters Based on Deep Reinforcement Learning
    Liu, Jiao
    Shi, Guoyou
    Zhu, Kaige
    Shi, Jiahui
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (04)
  • [48] Deep Reinforcement Learning with Noisy Exploration for Autonomous Driving
    Li, Ruyang
    Zhang, Yaqiang
    Zhao, Yaqian
    Wei, Hui
    Xu, Zhe
    Zhao, Kun
    PROCEEDINGS OF 2022 THE 6TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, ICMLSC 20222, 2022, : 8 - 14
  • [49] Cooperative Forward Collision Avoidance System Based on Deep Learning
    Farhat, Wajdi
    Ben Rhaiem, Olfa
    Faiedh, Hassene
    Souani, Chokri
    2021 14TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2021, : 515 - 519
  • [50] Distributed Deep Reinforcement Learning on the Cloud for Autonomous Driving
    Spryn, Mitchell
    Sharma, Aditya
    Parkar, Dhawal
    Shrimal, Madhur
    PROCEEDINGS 2018 IEEE/ACM 1ST INTERNATIONAL WORKSHOP ON SOFTWARE ENGINEERING FOR AI IN AUTONOMOUS SYSTEMS (SEFAIAS), 2018, : 16 - 22