Deep-Reinforcement-Learning-Based Collision Avoidance of Autonomous Driving System for Vulnerable Road User Safety

被引:2
|
作者
Chen, Haochong [1 ]
Cao, Xincheng [1 ]
Guvenc, Levent [1 ]
Aksun-Guvenc, Bilin [1 ]
机构
[1] Ohio State Univ, Automated Driving Lab, Columbus, OH 43212 USA
基金
美国安德鲁·梅隆基金会;
关键词
autonomous driving system; deep reinforcement learning; collision avoidance;
D O I
10.3390/electronics13101952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The application of autonomous driving system (ADS) technology can significantly reduce potential accidents involving vulnerable road users (VRUs) due to driver error. This paper proposes a novel hierarchical deep reinforcement learning (DRL) framework for high-performance collision avoidance, which enables the automated driving agent to perform collision avoidance maneuvers while maintaining appropriate speeds and acceptable social distancing. The novelty of the DRL method proposed here is its ability to accommodate dynamic obstacle avoidance, which is necessary as pedestrians are moving dynamically in their interactions with nearby ADSs. This is an improvement over existing DRL frameworks that have only been developed and demonstrated for stationary obstacle avoidance problems. The hybrid A* path searching algorithm is first applied to calculate a pre-defined path marked by waypoints, and a low-level path-following controller is used under cases where no VRUs are detected. Upon detection of any VRUs, however, a high-level DRL collision avoidance controller is activated to prompt the vehicle to either decelerate or change its trajectory to prevent potential collisions. The CARLA simulator is used to train the proposed DRL collision avoidance controller, and virtual raw sensor data are utilized to enhance the realism of the simulations. The model-in-the-loop (MIL) methodology is utilized to assess the efficacy of the proposed DRL ADS routine. In comparison to the traditional DRL end-to-end approach, which combines high-level decision making with low-level control, the proposed hierarchical DRL agents demonstrate superior performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Deep Reinforcement Learning Based Collision Avoidance Algorithm for Differential Drive Robot
    Lu, Xinglong
    Cao, Yiwen
    Zhao, Zhonghua
    Yan, Yilin
    INTELLIGENT ROBOTICS AND APPLICATIONS (ICIRA 2018), PT I, 2018, 10984 : 186 - 198
  • [22] A learning method for AUV collision avoidance through deep reinforcement learning
    Xu, Jian
    Huang, Fei
    Wu, Di
    Cui, Yunfei
    Yan, Zheping
    Du, Xue
    OCEAN ENGINEERING, 2022, 260
  • [23] Simulated Autonomous Driving on Realistic Road Networks sing Deep Reinforcement Learning
    Klose, Patrick
    Mester, Rudolf
    APPLICATIONS OF INTELLIGENT SYSTEMS, 2018, 310 : 169 - 180
  • [24] Deep reinforcement learning for pedestrian collision avoidance and human-machine cooperative driving
    Li, Junxiang
    Yao, Liang
    Xu, Xin
    Cheng, Bang
    Ren, Junkai
    INFORMATION SCIENCES, 2020, 532 : 110 - 124
  • [25] DEEP REINFORCEMENT LEARNING FOR SHIP COLLISION AVOIDANCE AND PATH TRACKING
    Singht, Amar Nath
    Vijayakumar, Akash
    Balasubramaniyam, Shankruth
    Somayajula, Abhilash
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 5B, 2024,
  • [26] Smooth Trajectory Collision Avoidance through Deep Reinforcement Learning
    Song, Sirui
    Saunders, Kirk
    Yue, Ye
    Liu, Jundong
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 914 - 919
  • [27] Research on autonomous collision avoidance of merchant ship based on inverse reinforcement learning
    Zheng, Mao
    Xie, Shuo
    Chu, Xiumin
    Zhu, Tianquan
    Tian, Guohao
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (06)
  • [28] Attention-Based Highway Safety Planner for Autonomous Driving via Deep Reinforcement Learning
    Chen, Guoxi
    Zhang, Ya
    Li, Xinde
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (01) : 162 - 175
  • [29] Socially Acceptable Collision Avoidance System for Vulnerable Road Users
    Emirler, Mumin Tolga
    Wang, Haoan
    Guvenc, Bilin Aksun
    IFAC PAPERSONLINE, 2016, 49 (03): : 436 - 441
  • [30] Deep Reinforcement Learning for Autonomous Driving: A Survey
    Kiran, B. Ravi
    Sobh, Ibrahim
    Talpaert, Victor
    Mannion, Patrick
    Al Sallab, Ahmad A.
    Yogamani, Senthil
    Perez, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 4909 - 4926