Chemical fault diagnosis network based on single domain generalization

被引:2
作者
Guo, Yu [1 ]
Zhang, Jundong [1 ]
机构
[1] Dalian Maritime Univ, Coll Marine Engn, Dalian 116026, Peoples R China
关键词
Fault diagnosis; Tennessee Eastman process; Process safety; Domain generalization; MODEL; IDENTIFICATION;
D O I
10.1016/j.psep.2024.05.106
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recent developments in fault diagnosis have leveraged domain generalization to address the issue of domain shift. Most existing methods focus on learning domain-invariant representations from multiple source domains. However, collecting valuable fault samples from varying operational conditions is challenging, and it is common for available data to originate from a single operational condition. Thus, this paper introduces a Multi-scale generative and adversarial Metric networks (MGAMN) for Chemical Process Fault Diagnosis. To enhance model generalization, a domain generation module was developed to create augmented domains with significant distributional differences from the source domain. The diagnostic task module then extracts domain-invariant features from both the source and augmented domains. A multi-scale generation strategy is established, utilizing multi-scale deep separable convolutions (Dsc) to ensure that the generated samples contain rich state information. Additionally, an adversarial training and metric learning strategy is designed to learn generalized features capable of resisting unknown domain shifts. Extensive diagnostic experiments on the non-isothermal continuous stirred tank reactor (CSTR) and the Tennessee Eastman Process (TEP) chemical datasets validate the effectiveness of the proposed method. Moreover, ablation studies confirm the effectiveness of the proposed modular strategy, demonstrating significant potential for practical applications.
引用
收藏
页码:1133 / 1144
页数:12
相关论文
共 50 条
  • [41] A Two-stage Domain Generalization Learning Framework for Fault Diagnosis of Bearings
    Xie, Gang
    Han, Qin
    Nie, Xiao-Yin
    Shi, Hui
    Zhang, Xiao-Hong
    Tian, Juan
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (11): : 2271 - 2285
  • [42] Deep Domain Generalization Combining A Priori Diagnosis Knowledge Toward Cross-Domain Fault Diagnosis of Rolling Bearing
    Zheng, Huailiang
    Yang, Yuantao
    Yin, Jiancheng
    Li, Yuqing
    Wang, Rixin
    Xu, Minqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [43] Domain Transferability-Based Deep Domain Generalization Method Towards Actual Fault Diagnosis Scenarios
    Shi, Yaowei
    Deng, Aidong
    Deng, Minqiang
    Li, Jing
    Xu, Meng
    Zhang, Shun
    Ding, Xue
    Xu, Shuo
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7355 - 7366
  • [44] Deep convolutional neural network model based chemical process fault diagnosis
    Wu, Hao
    Zhao, Jinsong
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 115 : 185 - 197
  • [45] A deep belief network based fault diagnosis model for complex chemical processes
    Zhang, Zhanpeng
    Zhao, Jinsong
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 107 : 395 - 407
  • [46] Domain generalization for cross-domain fault diagnosis: An application-oriented perspective and a benchmark study
    Zhao, Chao
    Zio, Enrico
    Shen, Weiming
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 245
  • [47] Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis
    Ma, Yulin
    Yang, Jun
    Li, Lei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 239
  • [48] Causal Consistency Network: A Collaborative Multimachine Generalization Method for Bearing Fault Diagnosis
    Li, Jie
    Wang, Yu
    Zi, Yanyang
    Zhang, Haijun
    Li, Chen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (04) : 5915 - 5924
  • [49] Federated domain generalization with global robust model aggregation strategy for bearing fault diagnosis
    Cong, Xiao
    Song, Yan
    Li, Yibin
    Jia, Lei
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (11)
  • [50] A blockchain-empowered secure federated domain generalization framework for machinery fault diagnosis
    Zhang, Shucheng
    Jiang, Pei
    Li, Xiaobin
    Yin, Chao
    Wang, Xi Vincent
    ADVANCED ENGINEERING INFORMATICS, 2024, 62