Identification of potential key ferroptosis- and autophagy-related genes in myelomeningocele through bioinformatics analysis

被引:3
作者
Wang, Xiuwei [1 ]
Wei, Kaixin [2 ]
Wang, Min [3 ]
Zhang, Li [2 ,4 ]
机构
[1] Capital Inst Pediat, Beijing Municipal Key Lab Child Dev & Nutri, Translat Med Lab, Beijing 100020, Peoples R China
[2] Shanxi Med Univ, Dept Biochem & Mol Biol, Taiyuan 030001, Shanxi, Peoples R China
[3] Jiaxing Univ, Coll Med, Dept Physiol, Jiaxing 314001, Zhejiang, Peoples R China
[4] Shanxi Med Univ, Liver Transplant Ctr, Dept Hepatobiliary & Pancreat Surg, Hosp 1, Taiyuan 030001, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Myelomenigocele; Ferroptosis; Autophagy; Gene expression omnibus; Enrichment analysis; Bioinformatics; NEURAL-TUBE DEFECTS; FERRITINOPHAGY; SCHIZOPHRENIA; CONTRIBUTES; MICRORNAS; STRESS;
D O I
10.1016/j.heliyon.2024.e29654
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Myelomeningocele is a common congenital anomaly associated with polygenic disorders worldwide. However, the intricate molecular mechanisms underlying myelomeningocele remain elusive. To investigate whether ferroptosis and ferritinophagy contribute to the pathomechanism of myelomeningocele, differentially expressed genes (DEGs) were identified as novel biomarker and potential treatment agents. The GSE101141 dataset from Gene Expression Omnibus (GEO) was analyzed using GEO2R web tool to obtain DEGs based on |log2 fold change (FC)| >= 1.5 and p < 0.05. Two datasets from the Ferroptosis Database (481 genes) and Autophagy Database (551 genes) were intersected with the DEGs from the GSE101141 dataset to identify ferroptosis- and autophagy-related DEGs using Venn diagrams. Functional and pathway enrichment, proteinprotein interaction (PPI) network analyses were performed, and candidate genes were selected. Transcription factors (TFs), microRNAs (miRNAs), diseases and chemicals interacting with the candidate genes were identified. Receiver operating characteristic (ROC) curve analysis was performed to validate the diagnostic value of the candidate genes. Sixty ferroptosis-related and 74 autophagy-related DEGs were identified. These DEGs are involved in FoxO signaling pathway. Six candidate genes ( EGFR , KRAS , IL1B , SIRT1 , ATM , and MAPK8 ) were selected. miRNAs such as hsa-miR-27a-3p, hsa-miR-877-5p, and hsa-miR-892b, and TFs including P53, POU3F2, TATA are involved in regulation of candidate genes. Diseases such as schizophrenia, fibrosis, and neoplasms are the most relevant to the candidate genes. Chemicals, such as resveratrol, curcumin, and quercetin may have significant implications in the treatment of myelomeningocele. The candidate genes, especially MAPK8 , also showed a high diagnostic value for myelomeningocele. These results help to shed light on the molecular mechanism of myelomeningocele and may provide new insights into diagnostic biomarker in the amniotic fluid and potential therapeutic agents of myelomeningocele.
引用
收藏
页数:14
相关论文
共 68 条
[1]   Ferritinophagy and ferroptosis in the management of metabolic diseases [J].
Ajoolabady, Amir ;
Aslkhodapasandhokmabad, Hami ;
Libby, Peter ;
Tuomeilehto, Jaakko ;
Lip, Gregory Y. H. ;
Penninger, Josef M. ;
Richarrdson, Des. R. ;
Tang, Daoli ;
Zhou, Hao ;
Wang, Shuyi ;
Kionsky, Daniel . J. ;
Kroemer, Guido ;
Ren, Jun .
TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2021, 32 (07) :444-462
[2]  
Alruwaili A.A., 2023, Disclosure: Joe M Das Declares No Relevant Financial Relationships with Ineligible Companies
[3]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[4]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[5]   MicroRNA functions [J].
Bushati, Natascha ;
Cohen, Stephen M. .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2007, 23 :175-205
[6]   JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles [J].
Castro-Mondragon, Jaime A. ;
Riudavets-Puig, Rafael ;
Rauluseviciute, Ieva ;
Lemma, Roza Berhanu ;
Turchi, Laura ;
Blanc-Mathieu, Romain ;
Lucas, Jeremy ;
Boddie, Paul ;
Khan, Aziz ;
Perez, Nicolas Manosalva ;
Fornes, Oriol ;
Leung, Tiffany Y. ;
Aguirre, Alejandro ;
Hammal, Fayrouz ;
Schmelter, Daniel ;
Baranasic, Damir ;
Ballester, Benoit ;
Sandelin, Albin ;
Lenhard, Boris ;
Vandepoele, Klaas ;
Wasserman, Wyeth W. ;
Parcy, Francois ;
Mathelier, Anthony .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D165-D173
[7]   Spina bifida [J].
Copp, Andrew J. ;
Adzick, N. Scott ;
Chitty, Lyn S. ;
Fletcher, Jack M. ;
Holmbeck, GraysonN. ;
Shaw, Gary M. .
NATURE REVIEWS DISEASE PRIMERS, 2015, 1
[8]   Comparative Toxicogenomics Database (CTD): update 2023 [J].
Davis, Allan Peter ;
Wiegers, Thomas C. ;
Johnson, Robin J. ;
Sciaky, Daniela ;
Wiegers, Jolene ;
Mattingly, Carolyn J. .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D1257-D1262
[9]   Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects [J].
Delbridge, Alex R. D. ;
Kueh, Andrew J. ;
Ke, Francine ;
Zamudio, Natasha M. ;
El-Saafin, Farrah ;
Jansz, Natasha ;
Wang, Gao-Yuan ;
Iminitoff, Megan ;
Beck, Tamara ;
Haupt, Sue ;
Hu, Yifang ;
May, Rose E. ;
Whitehead, Lachlan ;
Tai, Lin ;
Chiang, William ;
Herold, Marco J. ;
Haupt, Ygal ;
Smyth, Gordon K. ;
Thomas, Tim ;
Blewitt, Marnie E. ;
Strasser, Andreas ;
Voss, Anne K. .
CELL REPORTS, 2019, 27 (02) :442-+
[10]   Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data [J].
Doncheva, Nadezhda T. ;
Morris, John H. ;
Gorodkin, Jan ;
Jensen, Lars J. .
JOURNAL OF PROTEOME RESEARCH, 2019, 18 (02) :623-632