Unravelling drought and salinity stress responses in barley genotypes: physiological, biochemical, and molecular insights

被引:5
|
作者
Alsamadany, Hameed [1 ]
Abdulbaki, Abdulbaki Shehu [1 ,2 ]
Alzahrani, Yahya [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia
[2] Fed Univ Dutsinma, Fac Life Sci, Dept Plant Sci & Biotechnol, Dutsinma, Katsina, Nigeria
来源
关键词
abiotic stress; barley; genotype-specific responses; chlorophyll content; stomatal conductance; antioxidant enzyme activities; HORDEUM-VULGARE L; OXIDATIVE STRESS; TOLERANCE; WHEAT;
D O I
10.3389/fpls.2024.1417021
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the face of escalating environmental challenges, understanding crop responses to abiotic stress is pivotal for sustainable agriculture. The present study meticulously investigates the intricate interplay between drought and salinity stress in barley (Hordeum vulgare L.). Employing three distinct barley genotypes-Traveller, Prunella, and Zahna-we scrutinize their physiological, biochemical, and molecular adaptations under stress conditions. Our findings underscore genotype-specific responses, unravelling the multifaceted mechanisms that govern stress tolerance. Chlorophyll content, a vital indicator of photosynthetic efficiency, exhibits significant variations across genotypes. Salinity stress induces a decline in chlorophyll levels, while drought stress triggers a more nuanced response. Stomatal conductance, a key regulator of water loss, also diverges among the genotypes. Traveller displays remarkable stomatal closure under drought, conserving water, whereas Prunella and Zahna exhibit contrasting patterns. Antioxidant enzyme activities, crucial for combating oxidative stress, fluctuate significantly. Activities of superoxide dismutase (SOD) and catalase (CAT) surge under salinity stress, while drought predominantly impacts SOD. Gene expression profiling reveals genotype-specific signatures, with stress-responsive genes modulating adaptive pathways. Correlation analyses revealed the intricate interplay of the physiological and biochemical parameters. Genotype-specific adaptations, coupled with dynamic physiological and molecular responses, underscore the plasticity of barley's stress tolerance mechanisms. Throughout the study, the Zahna genotype demonstrated notable tolerance in terms of performance. These insights hold promise for breeding resilient cultivars, bolstering food security in an increasingly unpredictable climate. By deciphering the barley stress symphony, we contribute to the harmonious orchestration of sustainable agricultural practices.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review
    Rasheed, Adnan
    Li, Huijie
    Tahir, Majid M.
    Mahmood, Athar
    Nawaz, Muhammad
    Shah, Adnan Noor
    Aslam, Muhammad Talha
    Negm, Sally
    Moustafa, Mahmoud
    Hassan, Muhammad Umair
    Wu, Ziming
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [42] Mechanistic Concept of Physiological, Biochemical, and Molecular Responses of the Potato Crop to Heat and Drought Stress
    Lal, Milan Kumar
    Tiwari, Rahul Kumar
    Kumar, Awadhesh
    Dey, Abhijit
    Kumar, Ravinder
    Kumar, Dharmendra
    Jaiswal, Arvind
    Changan, Sushil Sudhakar
    Raigond, Pinky
    Dutt, Som
    Luthra, Satish Kumar
    Mandal, Sayanti
    Singh, Madan Pal
    Paul, Vijay
    Singh, Brajesh
    PLANTS-BASEL, 2022, 11 (21):
  • [43] Physiological, biochemical and elemental responses of grafted grapevines under drought stress: insights into tolerance mechanisms
    Krishankumar, Sonu
    Hunter, Jacobus J.
    Alyafei, Mohammed
    Hamed, Fathalla
    Subramaniam, Sreeramanan
    Ramlal, Ayyagari
    Kurup, Shyam S.
    Amiri, Khaled M. A.
    BMC PLANT BIOLOGY, 2025, 25 (01):
  • [44] Stress memory of physiological, biochemical and metabolomic responses in two different rice genotypes under drought stress: The scale matters
    Auler, Priscila Ariane
    Souza, Gustavo Maia
    da Silva Engela, Marcela Regina Goncalves
    do Amaral, Marcelo Nogueira
    Rossatto, Tatiana
    Ziglio da Silva, Maria Gabriella
    Furlan, Claudia Maria
    Maserti, Biancaelena
    Bolacel Braga, Eugenia Jacira
    PLANT SCIENCE, 2021, 311
  • [45] Structural and biochemical response of chloroplasts in tolerant and sensitive barley genotypes to drought stress
    Filek, Maria
    Labanowska, Maria
    Kurdziel, Magdalena
    Weselucha-Birczynska, Aleksandra
    Bednarska-Kozakiewicz, Elzbieta
    JOURNAL OF PLANT PHYSIOLOGY, 2016, 207 : 61 - 72
  • [46] Physiological and Molecular Responses of 'Dusa' Avocado Rootstock to Water Stress: Insights for Drought Adaptation
    Guillermo, Moreno-Ortega
    Adela, Zumaquero
    Antonio, Matas
    Olivier, Nicholas A.
    Noelani, van den Berg
    Palomo-Rios, Elena
    Elsa, Martinez-Ferri
    Clara, Pliego
    PLANTS-BASEL, 2021, 10 (10):
  • [47] Physiological and biochemical responses of citrus rootstocks under salinity stress
    Singh, Anshuman
    Prakash, Jai
    Srivastav, Manish
    Singh, S. K.
    Awasthi, O. P.
    Singh, A. K.
    Chaudhari, S. K.
    Sharma, D. K.
    INDIAN JOURNAL OF HORTICULTURE, 2014, 71 (02) : 162 - 167
  • [48] Applications of nanoparticles for mitigating salinity and drought stress in plants: an overview on the physiological, biochemical and molecular genetic aspects
    Heikal, Yasmin M.
    El-Esawi, Mohamed A.
    El-Ballat, Enas M.
    Abdel-Aziz, Heba M. M.
    NEW ZEALAND JOURNAL OF CROP AND HORTICULTURAL SCIENCE, 2023, 51 (03) : 297 - 327
  • [49] Physiological, biochemical and molecular evaluation of mungbean genotypes for agronomical yield under drought and salinity stresses in the presence of humic acid
    Alsamadany, Hameed
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2022, 29 (09)
  • [50] Delineation of physiological and transcriptional responses of different barley genotypes to salt stress
    Ghorbani, Soraya
    Etminan, Alireza
    Rashidi, Varahram
    Pour-Aboughadareh, Alireza
    Shooshtari, Lia
    CEREAL RESEARCH COMMUNICATIONS, 2023, 51 (02) : 367 - 377