Unravelling drought and salinity stress responses in barley genotypes: physiological, biochemical, and molecular insights

被引:5
|
作者
Alsamadany, Hameed [1 ]
Abdulbaki, Abdulbaki Shehu [1 ,2 ]
Alzahrani, Yahya [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia
[2] Fed Univ Dutsinma, Fac Life Sci, Dept Plant Sci & Biotechnol, Dutsinma, Katsina, Nigeria
来源
关键词
abiotic stress; barley; genotype-specific responses; chlorophyll content; stomatal conductance; antioxidant enzyme activities; HORDEUM-VULGARE L; OXIDATIVE STRESS; TOLERANCE; WHEAT;
D O I
10.3389/fpls.2024.1417021
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the face of escalating environmental challenges, understanding crop responses to abiotic stress is pivotal for sustainable agriculture. The present study meticulously investigates the intricate interplay between drought and salinity stress in barley (Hordeum vulgare L.). Employing three distinct barley genotypes-Traveller, Prunella, and Zahna-we scrutinize their physiological, biochemical, and molecular adaptations under stress conditions. Our findings underscore genotype-specific responses, unravelling the multifaceted mechanisms that govern stress tolerance. Chlorophyll content, a vital indicator of photosynthetic efficiency, exhibits significant variations across genotypes. Salinity stress induces a decline in chlorophyll levels, while drought stress triggers a more nuanced response. Stomatal conductance, a key regulator of water loss, also diverges among the genotypes. Traveller displays remarkable stomatal closure under drought, conserving water, whereas Prunella and Zahna exhibit contrasting patterns. Antioxidant enzyme activities, crucial for combating oxidative stress, fluctuate significantly. Activities of superoxide dismutase (SOD) and catalase (CAT) surge under salinity stress, while drought predominantly impacts SOD. Gene expression profiling reveals genotype-specific signatures, with stress-responsive genes modulating adaptive pathways. Correlation analyses revealed the intricate interplay of the physiological and biochemical parameters. Genotype-specific adaptations, coupled with dynamic physiological and molecular responses, underscore the plasticity of barley's stress tolerance mechanisms. Throughout the study, the Zahna genotype demonstrated notable tolerance in terms of performance. These insights hold promise for breeding resilient cultivars, bolstering food security in an increasingly unpredictable climate. By deciphering the barley stress symphony, we contribute to the harmonious orchestration of sustainable agricultural practices.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress
    Chhaya Yadav
    Rajeev Nayan Bahuguna
    Om Parkash Dhankher
    Sneh L. Singla-Pareek
    Ashwani Pareek
    Physiology and Molecular Biology of Plants, 2022, 28 : 899 - 910
  • [22] Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress
    Yadav, Chhaya
    Bahuguna, Rajeev Nayan
    Dhankher, Om Parkash
    Singla-Pareek, Sneh L.
    Pareek, Ashwani
    PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS, 2022, 28 (04) : 899 - 910
  • [23] Physiological Responses of Common Bean Genotypes to Drought Stress
    Mladenov, Petko
    Aziz, Sibel
    Topalova, Elena
    Renaut, Jenny
    Planchon, Sebastien
    Raina, Aamir
    Tomlekova, Nasya
    AGRONOMY-BASEL, 2023, 13 (04):
  • [24] Physiological and Biochemical Characterization of Linseed Genotypes under Salinity Stress
    Qayyum, Muhammad Abdul
    Akhtar, Javaid
    Bashir, Farhat
    Naz, Tayyaba
    Iqbal, Muhammad Mazhar
    Farooq, Omer
    Atique-ur-Rehman
    Zafar, Mazhar Iqbal
    Ali, Muqarrab
    Imtiaz, Muhammad
    Sarwar, Muhammad Aleem
    Saqib, Zulfiqar Ahmad
    Basra, Shahzad Maqsood Ahmad
    Zhang Guoping
    Yinglan
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2020, 23 (03) : 630 - 636
  • [25] Insights into physiological and biochemical responses of Zea mays L. under salinity stress
    Aizaz, Muhammad
    Ullah, Raza
    Ullah, Tariq
    Sami, Rokayya
    Aljabri, Maha
    Althaqafi, Mohammed M.
    AL-Farga, Ammar
    Qari, Sameer H.
    EMIRATES JOURNAL OF FOOD AND AGRICULTURE, 2024, 36 : 1 - 13
  • [26] Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress
    Jimenez, Sergio
    Dridi, Jihene
    Gutierrez, Diego
    Moret, David
    Irigoyen, Juan J.
    Moreno, Maria A.
    Gogorcena, Yolanda
    TREE PHYSIOLOGY, 2013, 33 (10) : 1061 - 1075
  • [27] Physiological and biochemical adaptations in lentil genotypes under drought stress
    B. K. Mishra
    J. P. Srivastava
    J. P. Lal
    M. S. Sheshshayee
    Russian Journal of Plant Physiology, 2016, 63 : 695 - 708
  • [28] Physiological and Biochemical Adaptations in Lentil Genotypes under Drought Stress
    Mishra, B. K.
    Srivastava, J. P.
    Lal, J. P.
    Sheshshayee, M. S.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2016, 63 (05) : 695 - 708
  • [29] Biochemical and Physiological Response of Egyptian Wheat Genotypes to Drought Stress
    Hanafy, Ahmed H.
    Allam, Mai A.
    El-Soda, Mohamed
    Esmail, Ramadan M.
    Ramadan, Walaa A.
    Sakr, Mahmoud M.
    Helmi, Radwa Y.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2023, 66 (07): : 1 - 17
  • [30] Physiological and molecular responses of stress sensitive and tolerant banana genotypes to drought heat and their combination
    Chaudhari, R. S.
    Jangale, B. L.
    Sane, A. P.
    Sane, P. V.
    Krishna, B.
    XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: INTERNATIONAL SYMPOSIUM ON ADAPTATION OF HORTICULTURAL PLANTS TO ABIOTIC STRESSES, 2023, 1372 : 33 - 41