Unravelling drought and salinity stress responses in barley genotypes: physiological, biochemical, and molecular insights

被引:5
|
作者
Alsamadany, Hameed [1 ]
Abdulbaki, Abdulbaki Shehu [1 ,2 ]
Alzahrani, Yahya [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia
[2] Fed Univ Dutsinma, Fac Life Sci, Dept Plant Sci & Biotechnol, Dutsinma, Katsina, Nigeria
来源
关键词
abiotic stress; barley; genotype-specific responses; chlorophyll content; stomatal conductance; antioxidant enzyme activities; HORDEUM-VULGARE L; OXIDATIVE STRESS; TOLERANCE; WHEAT;
D O I
10.3389/fpls.2024.1417021
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the face of escalating environmental challenges, understanding crop responses to abiotic stress is pivotal for sustainable agriculture. The present study meticulously investigates the intricate interplay between drought and salinity stress in barley (Hordeum vulgare L.). Employing three distinct barley genotypes-Traveller, Prunella, and Zahna-we scrutinize their physiological, biochemical, and molecular adaptations under stress conditions. Our findings underscore genotype-specific responses, unravelling the multifaceted mechanisms that govern stress tolerance. Chlorophyll content, a vital indicator of photosynthetic efficiency, exhibits significant variations across genotypes. Salinity stress induces a decline in chlorophyll levels, while drought stress triggers a more nuanced response. Stomatal conductance, a key regulator of water loss, also diverges among the genotypes. Traveller displays remarkable stomatal closure under drought, conserving water, whereas Prunella and Zahna exhibit contrasting patterns. Antioxidant enzyme activities, crucial for combating oxidative stress, fluctuate significantly. Activities of superoxide dismutase (SOD) and catalase (CAT) surge under salinity stress, while drought predominantly impacts SOD. Gene expression profiling reveals genotype-specific signatures, with stress-responsive genes modulating adaptive pathways. Correlation analyses revealed the intricate interplay of the physiological and biochemical parameters. Genotype-specific adaptations, coupled with dynamic physiological and molecular responses, underscore the plasticity of barley's stress tolerance mechanisms. Throughout the study, the Zahna genotype demonstrated notable tolerance in terms of performance. These insights hold promise for breeding resilient cultivars, bolstering food security in an increasingly unpredictable climate. By deciphering the barley stress symphony, we contribute to the harmonious orchestration of sustainable agricultural practices.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Physiological and Molecular Responses of Barley Genotypes to Salinity Stress
    Jadidi, Omid
    Etminan, Alireza
    Azizi-Nezhad, Reza
    Ebrahimi, Asa
    Pour-Aboughadareh, Alireza
    GENES, 2022, 13 (11)
  • [2] Salinity and drought stress in plants: understanding physiological, biochemical and molecular responses
    Waseem, Muhammad
    Liu, Pingwu
    Aslam, Mehtab Muhammad
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [3] Comparison of Biochemical, Anatomical, Morphological, and Physiological Responses to Salinity Stress in Wheat and Barley Genotypes Deferring in Salinity Tolerance
    Zeeshan, Muhammad
    Lu, Meiqin
    Sehar, Shafaque
    Holford, Paul
    Wu, Feibo
    AGRONOMY-BASEL, 2020, 10 (01):
  • [4] Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley
    Mian Zhang
    Zhu-Qun Jin
    Jing Zhao
    Guoping Zhang
    Feibo Wu
    Plant Growth Regulation, 2015, 75 : 567 - 574
  • [5] Physiological, biochemical, and metabolic responses of abiotic plant stress: salinity and drought
    Goharrizi, Kiarash Jamshidi
    Hamblin, Michael R.
    Karami, Soraya
    Nazari, Maryam
    TURKISH JOURNAL OF BOTANY, 2021, 45 (01) : 623 - 642
  • [6] Physiological and biochemical responses to drought stress in cultivated and Tibetan wild barley
    Zhang, Mian
    Jin, Zhu-Qun
    Zhao, Jing
    Zhang, Guoping
    Wu, Feibo
    PLANT GROWTH REGULATION, 2015, 75 (02) : 567 - 574
  • [7] Molecular and physiological responses of two quinoa genotypes to drought stress
    Zhu, Xiaolin
    Liu, Wenyu
    Wang, Baoqiang
    Yang, Ling
    FRONTIERS IN GENETICS, 2024, 15
  • [8] Drought Stress Responses in Arabica Coffee Genotypes: Physiological and Metabolic Insights
    Chekol, Habtamu
    Warkineh, Bikila
    Shimber, Tesfaye
    Mierek-Adamska, Agnieszka
    Dabrowska, Grazyna B.
    Degu, Asfaw
    PLANTS-BASEL, 2024, 13 (06):
  • [9] Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses
    Chourasia, Kumar Nishant
    Lal, Milan Kumar
    Tiwari, Rahul Kumar
    Dev, Devanshu
    Kardile, Hemant Balasaheb
    Patil, Virupaksh U.
    Kumar, Amarjeet
    Vanishree, Girimalla
    Kumar, Dharmendra
    Bhardwaj, Vinay
    Meena, Jitendra Kumar
    Mangal, Vikas
    Shelake, Rahul Mahadev
    Kim, Jae-Yean
    Pramanik, Dibyajyoti
    LIFE-BASEL, 2021, 11 (06):
  • [10] Physiological, Biochemical and Molecular Responses of Barley Seedlings to Aluminum Stress
    Zhang, Xiaoqin
    Tong, Tao
    Tian, Bin
    Fang, Yunxia
    Pan, Jiangjie
    Zheng, Junjun
    Xue, Dawei
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2019, 88 (03): : 253 - 260