Higher-order rogue waves due to a coupled cubic-quintic nonlinear Schrödinger equations in a nonlinear electrical network

被引:1
|
作者
Djelah, Gabriel [1 ]
Ndzana, Fabien I. I. [1 ,2 ,3 ]
Abdoulkary, Saidou [1 ,4 ]
English, L. Q. [5 ]
Mohamadou, Alidou [1 ,2 ,6 ,7 ]
机构
[1] Univ Maroua, Fac Sci, Complex Syst, POB 814, Maroua, Cameroon
[2] Univ Yaounde I, Int Ctr Complex Syst, Fac Sci, POB 812, Yaounde, Cameroon
[3] Ecole Normale Super Enseignement Tech Ebolowa, BP 886, Ebolowa, Cameroon
[4] Ecole Natl Super Mines & Ind Petrolieres, Dept SF, POB 08, Kaele, Cameroon
[5] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[6] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
[7] Abdus Salam Int Ctr Theoret Phys, POB 586,Str Costiera II, I-34014 Trieste, Italy
关键词
Nonlinear transmission lines; Coupled cubic-quintic nonlinear Schr & ouml; dinger; equations; Generalized Darboux transformation; Rogue waves; SCHRODINGER-EQUATIONS; TRANSMISSION-LINES; INTEGRABILITY;
D O I
10.1016/j.physleta.2024.129666
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a nonlinear dispersive electrical transmission network, with a CMOS varactor. Using the reductive perturbation method in semi-discrete limit, we show that the dynamics of modulated waves is governed by a pair of coupled cubic-quintic nonlinear Schr & ouml;dinger equations. Through the generalized Darboux transformation, we construct high order rogue waves solutions including pairs of first-, second- and third-order rational solutions. Our results show that the wavenumber influences the amplitude and phase of waves. We numerically show that the first and second order rogue waves are more stable than the third ones and in good agreement with the analytical results.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Traveling waves, chaos and solitons in a cubic-quintic nonlinear optical media
    Youssoufa, Mati
    Dafounansou, Ousmanou
    Inc, Mustafa
    Rezapour, Shahram
    Mohamadou, Alidou
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01)
  • [42] Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrodinger equations
    Chen, Shihua
    Baronio, Fabio
    Soto-Crespo, Jose M.
    Liu, Yi
    Grelu, Philippe
    PHYSICAL REVIEW E, 2016, 93 (06)
  • [43] A higher-order coupled nonlinear Schrodinger system: solitons, breathers, and rogue wave solutions
    Guo, Rui
    Zhao, Hui-Hui
    Wang, Yuan
    NONLINEAR DYNAMICS, 2016, 83 (04) : 2475 - 2484
  • [44] Dynamics of higher-order localized waves for a coupled nonlinear Schrodinger equation
    Song, N.
    Xue, H.
    Xue, Y. K.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 82
  • [45] Higher-Order Rogue Waves for a Fifth-Order Dispersive Nonlinear Schrodinger Equation in an Optical Fibre
    Wang, Qi-Min
    Gao, Yi-Tian
    Su, Chuan-Qi
    Shen, Yu-Jia
    Feng, Yu-Jie
    Xue, Long
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (05): : 365 - 374
  • [46] Analysis of characteristics of rogue waves for higher-order equations
    Ankiewicz, A.
    Chowdury, A.
    NONLINEAR DYNAMICS, 2022, 109 (02) : 1069 - 1080
  • [47] Analysis of characteristics of rogue waves for higher-order equations
    A. Ankiewicz
    A. Chowdury
    Nonlinear Dynamics, 2022, 109 : 1069 - 1080
  • [48] Nonautonomous soliton, controllable interaction and numerical simulation for generalized coupled cubic-quintic nonlinear Schrodinger equations
    Yu, Fajun
    NONLINEAR DYNAMICS, 2016, 85 (02) : 1203 - 1216
  • [49] Higher-order rogue wave solutions of a general coupled nonlinear Fokas-Lenells system
    Yang, Jianwen
    Zhang, Yi
    NONLINEAR DYNAMICS, 2018, 93 (02) : 585 - 597
  • [50] Rogue waves in electronegative space plasmas: The link between the family of the KdV equations and the nonlinear Schrödinger equation
    S. A. El-Tantawy
    Astrophysics and Space Science, 2016, 361