Sobolev embeddings in Musielak-Orlicz spaces

被引:2
作者
Cianchi, Andrea [1 ]
Diening, Lars [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Bielefeld, Fak Math, Univ Str 25, D-33615 Bielefeld, Germany
关键词
Musielak-Orlicz spaces; Sobolev inequalities; Generalized Young functions; Riesz potentials; VARIABLE EXPONENT; INEQUALITIES; LEBESGUE; THEOREM;
D O I
10.1016/j.aim.2024.109679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding theorem for Sobolev spaces built upon general Musielak-Orlicz norms is offered. These norms are defined in terms of generalized Young functions which also depend on the x variable. Under minimal conditions on the latter dependence, a Sobolev conjugate is associated with any function of this type. Such a conjugate is sharp, in the sense that, for each fixed x , it agrees with the sharp Sobolev conjugate in classical Orlicz spaces. Both Sobolev inequalities in the whole R n and Sobolev-Poincar & eacute; inequalities in domains are established. Compact Sobolev embeddings are also presented. In particular, optimal embeddings for standard Orlicz-Sobolev spaces, variable exponent Sobolev spaces, and double -phase Sobolev spaces are recovered and complemented in borderline cases. A key tool, of independent interest, in our approach is a new weak type inequality for Riesz potentials in Musielak-Orlicz spaces involving a sharp fractional -order Sobolev conjugate. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC -ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:51
相关论文
共 39 条
  • [31] KOVACIK O, 1991, CZECH MATH J, V41, P592
  • [32] Maz'ya V, 2011, GRUNDLEHR MATH WISS, V342, P1, DOI 10.1007/978-3-642-15564-2
  • [33] MAZYA VG, 1961, DOKL AKAD NAUK SSSR+, V140, P299
  • [34] Mendez O., 2019, Monographs and Research Notes in Mathematics
  • [35] Sobolev's Inequality for Musielak-Orlicz-Sobolev Functions
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    [J]. RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [36] MUSIELAK J, 1983, LECT NOTES MATH, V1034, P1
  • [37] Nakano H., 1950, MODULARED SEMIORDERE, pi+288
  • [38] Hardy-Littlewood maximal operator on Lp(x)(R)
    Nekvinda, A
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 255 - 265
  • [39] Ziemer W.P., 1989, Graduate Texts in Mathematics, V120