Sobolev embeddings in Musielak-Orlicz spaces

被引:2
作者
Cianchi, Andrea [1 ]
Diening, Lars [2 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, Italy
[2] Univ Bielefeld, Fak Math, Univ Str 25, D-33615 Bielefeld, Germany
关键词
Musielak-Orlicz spaces; Sobolev inequalities; Generalized Young functions; Riesz potentials; VARIABLE EXPONENT; INEQUALITIES; LEBESGUE; THEOREM;
D O I
10.1016/j.aim.2024.109679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An embedding theorem for Sobolev spaces built upon general Musielak-Orlicz norms is offered. These norms are defined in terms of generalized Young functions which also depend on the x variable. Under minimal conditions on the latter dependence, a Sobolev conjugate is associated with any function of this type. Such a conjugate is sharp, in the sense that, for each fixed x , it agrees with the sharp Sobolev conjugate in classical Orlicz spaces. Both Sobolev inequalities in the whole R n and Sobolev-Poincar & eacute; inequalities in domains are established. Compact Sobolev embeddings are also presented. In particular, optimal embeddings for standard Orlicz-Sobolev spaces, variable exponent Sobolev spaces, and double -phase Sobolev spaces are recovered and complemented in borderline cases. A key tool, of independent interest, in our approach is a new weak type inequality for Riesz potentials in Musielak-Orlicz spaces involving a sharp fractional -order Sobolev conjugate. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY -NC -ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页数:51
相关论文
共 39 条
  • [1] Adams D.R., 1996, Fundamental Principles of Mathematical Sciences, V314, P366
  • [2] Gradient estimates for Orlicz double phase problems with variable exponents
    Baasandorja, Sumiya
    Byunb, Sun-Sig
    Lee, Ho-Sik
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [3] Regularity for general functionals with double phase
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [4] Convergence analysis for a finite element approximation of a steady model for electrorheological fluids
    Berselli, Luigi C.
    Breit, Dominic
    Diening, Lars
    [J]. NUMERISCHE MATHEMATIK, 2016, 132 (04) : 657 - 689
  • [5] FINITE ELEMENT APPROXIMATION OF THE p(.)-LAPLACIAN
    Breit, Dominic
    Diening, Lars
    Schwarzacher, Sebastian
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 551 - 572
  • [6] Chlebicka I., 2021, PARTIAL DIFFERENTIAL
  • [7] Boundary regularity for manifold constrained p(x)-harmonic maps
    Chlebicka, Iwona
    De Filippis, Cristiana
    Koch, Lukas
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (05): : 2335 - 2375
  • [8] Cianchi A, 2004, REV MAT IBEROAM, V20, P427
  • [9] Cianchi A, 1997, COMMUN PART DIFF EQ, V22, P1629
  • [10] An extension of Hedberg's convolution inequality and applications
    Cianchi, A
    Stroffolini, B
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 227 (01) : 166 - 186