CAROTIDNet: A Novel Carotid Symptomatic/Asymptomatic Plaque Detection System Using CNN-Based Tangent Optimization Algorithm in B-Mode Ultrasound Images

被引:2
作者
Ali, Tanweer [1 ]
Pathan, Sameena [2 ]
Salvi, Massimo [3 ]
Meiburger, Kristen M. [3 ]
Molinari, Filippo [3 ]
Acharya, U. Rajendra [4 ,5 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Elect & Commun Engn, Manipal 576104, India
[2] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Informat & Commun Technol, Manipal 576104, India
[3] Politecn Torino, Dept Elect & Telecommun, PolitoBIOMed Lab, Biolab, I-10129 Turin, Italy
[4] Univ Southern Queensland, Sch Math Phys & Comp, Springfield, Qld 4300, Australia
[5] Univ Southern Queensland, Ctr Hlth Res, Springfield, Qld 4300, Australia
关键词
Optimization; Ultrasonic imaging; Convolutional neural networks; Classification algorithms; Sensitivity; Biomedical imaging; Atherosclerosis; Deep learning; Optimization methods; Plaque classification; deep learning; carotid artery imaging; tangent optimization algorithm; ultrasound imaging; MEDIA THICKNESS MEASUREMENT; ATHEROSCLEROTIC PLAQUE; SEGMENTATION;
D O I
10.1109/ACCESS.2024.3404023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep learning methods have shown promise for automated medical image analysis tasks. However, class imbalance is a common challenge that can negatively impact model performance, especially for tasks with minority classes that are clinically significant. This study aims to address this challenge through a novel hyperparameter optimization technique for training convolutional neural networks on imbalanced data. We developed a custom Convolutional Neural Network (CNN) architecture and introduced a Tangent Optimization Algorithm (TOA) based on the trigonometric properties of the tangent function. The TOA optimizes hyperparameters during training without requiring data preprocessing or augmentation steps. We applied our approach to classifying B-mode ultrasound carotid artery plaque images as symptomatic or asymptomatic using a dataset with significant class imbalance. On k-fold cross-validation, our method achieved an average accuracy of 98.82%, a sensitivity of 99.41%, and a specificity of 95.74%. The proposed optimization technique provides a computationally efficient and interpretable solution for training deep learning models on unbalanced medical image datasets.
引用
收藏
页码:73970 / 73979
页数:10
相关论文
共 32 条
[1]   Symptomatic vs. Asymptomatic Plaque Classification in Carotid Ultrasound [J].
Acharya, Rajendra U. ;
Faust, Oliver ;
Alvin, A. P. C. ;
Sree, S. Vinitha ;
Molinari, Filippo ;
Saba, Luca ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (03) :1861-1871
[2]   Understanding symptomatology of atherosclerotic plaque by image-based tissue characterization [J].
Acharya, U. Rajendra ;
Faust, Oliver ;
Sree, Vinitha S. ;
Alvin, A. P. C. ;
Krishnamurthi, Ganapathy ;
Seabra, Jose C. R. ;
Sanches, Joao ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 110 (01) :66-75
[3]  
Afonso J., An ultrasonographic risk score for detecting symptomatic carotidatherosclerotic plaques
[4]  
Assi M., 2024, Invasive Health Systems Based onAdvanced Biomedical Signal and Image Processing, P128
[5]   Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: A screening tool for cardiovascular/stroke risk assessment [J].
Biswas, Mainak ;
Saba, Luca ;
Chakrabartty, Shubhro ;
Khanna, Narender N. ;
Song, Hanjung ;
Suri, Harman S. ;
Sfikakis, Petros P. ;
Mavrogeni, Sophie ;
Viskovic, Klaudija ;
Laird, John R. ;
Cuadrado-Godia, Elisa ;
Nicolaides, Andrew ;
Sharma, Aditya ;
Viswanathan, Vijay ;
Protogerou, Athanasios ;
Kitas, George ;
Pareek, Gyan ;
Miner, Martin ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 123
[6]   Deep learning strategy for accurate carotid intima-media thickness measurement: An ultrasound study on Japanese diabetic cohort [J].
Biswas, Mainak ;
Kuppili, Venkatanareshbabu ;
Araki, Tadashi ;
Edla, Damodar Reddy ;
Godia, Elisa Cuadrado ;
Saba, Luca ;
Suri, Harman S. ;
Omerzu, Tomaz ;
Laird, John R. ;
Khanna, Narendra N. ;
Nicolaides, Andrew ;
Suri, Jasjit S. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 98 :100-117
[7]  
CDC, Multiple Cause of Death, 1999-2017 Request
[8]  
Cortes C, 2012, Arxiv, DOI [arXiv:1205.2653, DOI 10.48550/ARXIV.1205.2653]
[9]   AutoAugment: Learning Augmentation Strategies from Data [J].
Cubuk, Ekin D. ;
Zoph, Barret ;
Mane, Dandelion ;
Vasudevan, Vijay ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :113-123
[10]   Ultrasound methods of imaging atherosclerotic plaque in carotid arteries: examinations using contrast agents [J].
Fedak, Andrzej ;
Chrzan, Robert ;
Chukwu, Ositadima ;
Urbanik, Andrzej .
JOURNAL OF ULTRASONOGRAPHY, 2020, 20 (82) :E191-E200