Radial Positive Solutions for Problems Involving φ-Laplacian Operators with Weights

被引:0
作者
Belkahla, Sywar [1 ]
Khamessi, Bilel [2 ,3 ]
El Abidine, Zagharide Zine [4 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
[2] Univ Tunis El Manar, Fac Sci Tunis, LR18ES09 Math Modelling Harmon Anal & Potential Th, Tunis 2092, Tunisia
[3] Taibah Univ, Dept Math, Coll Sci, POB 30002, Al Madinah Al Munawarah, Saudi Arabia
[4] Univ Sousse, Higher Sch Sci & Technol Hammam Sousse, LR16ES13, Sousse, Tunisia
关键词
positive solutions; asymptotic behavior; phi-Laplacian; Karamata class; DIMENSIONAL SINGULAR P; EXISTENCE THEOREMS; ELLIPTIC PROBLEMS; EQUATION;
D O I
10.15407/mag20.02.153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the potential theory, we establish the existence and the asypmtotic behavior of radial solutions for the following boundary value problem: {-1/A (A phi(|u'|)u')' = a(t)u(sigma) on (0, 1), A phi( |u'|)u'(0) = 0, u(1) = 0 , where sigma > 0, A is a positive differentiable function on (0, 1) and the nonnegative function phi is continuously differentiable on [0 , infinity ) such that for each t > 0, k(1) <=(t phi( t))'/phi( t) <= k(2) , where k(1) > 0 and k(2) > 0. The nonnegative nonlinearity a is required to satisfy some appropriate assumptions related to the Karamata regular variation theory. We end this paper by giving applications.
引用
收藏
页码:153 / 171
页数:19
相关论文
共 18 条
[1]   Existence theorems for the one-dimensional singular p -: Laplacian equation with sign changing nonlinearities [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 143 (01) :15-38
[2]   Radial solutions for the p-Laplacian equation [J].
Bachar, Imed ;
Ben Othman, Sonia ;
Maagli, Habib .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (06) :2198-2205
[3]  
Ben Othman S., 2012, Electron. J. Differential Equations., V240, P1
[4]   Soliton like solutions of a Lorentz invariant equation in dimension 3 [J].
Benci, V ;
Fortunato, D ;
Pisani, L .
REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) :315-344
[5]  
Bereanu C, 2008, J FIX POINT THEORY A, V4, P57, DOI 10.1007/s11784-008-0072-7
[6]   Combined effects in nonlinear singular elliptic problems in a bounded domain [J].
Chemmam, Rym ;
Maagli, Habib ;
Masmoudi, Syrine ;
Zribi, Malek .
ADVANCES IN NONLINEAR ANALYSIS, 2012, 1 (04) :301-318
[7]  
Chinní A, 2019, J FIX POINT THEORY A, V21, DOI 10.1007/s11784-019-0703-1
[8]   Existence and uniqueness results for some nonlinear boundary value problems [J].
Dang, H ;
Oppenheimer, SF .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) :35-48
[9]  
Dridi S., 2015, Nonlinear Stud, V22, P87
[10]   On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems [J].
Fukagai, Nobuyoshi ;
Narukawa, Kimiaki .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) :539-564