Darboux transformation of symmetric Jacobi matrices and Toda lattices

被引:0
|
作者
Kovalyov, Ivan [1 ]
Levina, Oleksandra [2 ]
机构
[1] Univ Osnabruck, Inst Math, Osnabruck, Germany
[2] Mykhailo Drahomanov Ukrainian State Univ, Fac Math Informat & Phys, Kiev, Ukraine
关键词
Jacobi matrix; Darboux transformation; orthogonal polynomials; moment problem; Toda lattice; FINITE;
D O I
10.3389/fams.2024.1397374
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J be a symmetric Jacobi matrix associated with some Toda lattice. We find conditions for Jacobi matrix J to admit factorization J = LU (or J = UL) with L (or L) and U ( or U) being lower and upper triangular two-diagonal matrices, respectively. In this case, theDarboux transformation of J is the symmetric Jacobi matrix J((p)) = UL (or J((d)) = LU), which is associated with another Toda lattice. In addition, we found explicit transformation formulas for orthogonal polynomials, m-functions and Toda lattices associated with the Jacobi matrices and their Darboux transformations.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Integration of toda lattices with steplike initial data
    Ag. Kh. Khanmamedov
    L. K. Asadova
    Doklady Mathematics, 2013, 87 : 36 - 38
  • [42] Continuum limits of Toda lattices for map enumeration
    Pierce, Virgil U.
    ALGEBRAIC AND GEOMETRIC ASPECTS OF INTEGRABLE SYSTEMS AND RANDOM MATRICES, 2013, 593 : 317 - +
  • [43] Kinetic theory of quantum and classical Toda lattices
    Bulchandani, Vir B.
    Cao, Xiangyu
    Moore, Joel E.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (33)
  • [44] Kostant-Toda lattices and the universal centralizer
    Crooks, Peter
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 150
  • [45] Darboux transformation for the NLS equation
    Aktosun, Tuncay
    van der Mee, Cornelis
    NONLINEAR AND MODERN MATHEMATICAL PHYSICS, 2010, 1212 : 254 - +
  • [46] Darboux transformation for Tzitzeica equation
    Zhu, JY
    Geng, XG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 577 - 580
  • [47] The Heun equation and the Darboux transformation
    Sirota, YN
    Smirnov, AO
    MATHEMATICAL NOTES, 2006, 79 (1-2) : 244 - 253
  • [48] A Darboux Transformation for Ito Equation
    Niu, Xiaoxing
    Zhang, Mengxia
    Lv, Shuqiang
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (05): : 427 - 431
  • [49] The Heun Equation and the Darboux Transformation
    Yu. N. Sirota
    A. O. Smirnov
    Mathematical Notes, 2006, 79 : 244 - 253
  • [50] Darboux Transformation for the Hirota Equation
    Yilmaz, Halis
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2022, 18 (01) : 136 - 152