Darboux transformation of symmetric Jacobi matrices and Toda lattices

被引:0
|
作者
Kovalyov, Ivan [1 ]
Levina, Oleksandra [2 ]
机构
[1] Univ Osnabruck, Inst Math, Osnabruck, Germany
[2] Mykhailo Drahomanov Ukrainian State Univ, Fac Math Informat & Phys, Kiev, Ukraine
关键词
Jacobi matrix; Darboux transformation; orthogonal polynomials; moment problem; Toda lattice; FINITE;
D O I
10.3389/fams.2024.1397374
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J be a symmetric Jacobi matrix associated with some Toda lattice. We find conditions for Jacobi matrix J to admit factorization J = LU (or J = UL) with L (or L) and U ( or U) being lower and upper triangular two-diagonal matrices, respectively. In this case, theDarboux transformation of J is the symmetric Jacobi matrix J((p)) = UL (or J((d)) = LU), which is associated with another Toda lattice. In addition, we found explicit transformation formulas for orthogonal polynomials, m-functions and Toda lattices associated with the Jacobi matrices and their Darboux transformations.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Pade approximants and complex high order Toda lattices
    Aptekarev, AI
    Branquinho, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 155 (02) : 231 - 237
  • [22] Inverse eigenvalue problem for pseudo-symmetric Jacobi matrices with two spectra
    Mirzaei, Hanif
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04) : 759 - 768
  • [23] On the Darboux-Nijenhuis Variables for the Open Toda Lattice
    Grigoryev, Yuriy A.
    Tsiganov, Andrey V.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [24] Darboux transformation and perturbation of linear functionals
    Bueno, MI
    Marcellán, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 384 : 215 - 242
  • [25] Regularization of Toda lattices by Hamiltonian reduction
    Feher, L
    Tsutsui, I
    JOURNAL OF GEOMETRY AND PHYSICS, 1997, 21 (02) : 97 - 135
  • [26] Darboux transformations for CMV matrices
    Cantero, M. J.
    Marcellan, F.
    Moral, L.
    Velazquez, L.
    ADVANCES IN MATHEMATICS, 2016, 298 : 122 - 206
  • [27] On Fourier Series in the Context of Jacobi Matrices
    Matos, Jose M. A.
    Vasconcelos, Paulo B.
    Matos, Jose A. O.
    AXIOMS, 2024, 13 (09)
  • [28] The multidimensional Darboux transformation
    Gonzalez-Lopez, A
    Kamran, N
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 26 (3-4) : 202 - 226
  • [29] Commutation and Darboux transformation
    Prabhakar, M. V.
    Bhate, H.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (05): : 869 - 880
  • [30] Commutation and Darboux transformation
    M V PRABHAKAR
    H BHATE
    Pramana, 2015, 85 : 869 - 880