Cell-Specific Single Viral Vector CRISPR/Cas9 Editing and Genetically Encoded Tool Delivery in the Central and Peripheral Nervous Systems

被引:1
|
作者
Moffa, Jamie C. [1 ,2 ]
Bland, India N. [1 ]
Tooley, Jessica R. [1 ,3 ]
Kalyanaraman, Vani [1 ]
Heitmeier, Monique [1 ]
Creed, Meaghan C. [1 ,4 ,5 ,6 ]
Copits, Bryan A. [1 ]
机构
[1] Washington Univ, Pain Ctr, Sch Med, Dept Anesthesiol, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Med Scientist Training Program, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Div Biol & Behav Sci, St Louis, MO 63110 USA
[4] Washington Univ, Sch Med, Dept Neurosci, St Louis, MO 63110 USA
[5] Washington Univ, Sch Med, Dept Psychiat, St Louis, MO 63110 USA
[6] Washington Univ, Sch Med, Dept Biomed Engn, St Louis, MO 63110 USA
关键词
CRISPR/Cas9; gene editing; imaging; optogenetics; photometry; tool; PACKAGING CAPACITY; NEURONS; CRE; KNOCKOUT; ADULT; MUTAGENESIS; DELETION; PROVIDES; RELEASE; BINDING;
D O I
10.1523/ENEURO.0438-23.2024
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
CRISPR/Cas9 gene editing represents an exciting avenue to study genes of unknown function and can be combined with genetically encoded tools such as fluorescent proteins, channelrhodopsins, DREADDs, and various biosensors to more deeply probe the function of these genes in different cell types. However, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 from a genomic locus affords space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three common tools in neuroscience: ChRonos, a channelrhodopsin, for studying synaptic transmission using optogenetics, GCaMP8f for recording Ca 2+ transients using photometry, and mCherry for tracing axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens, glutamatergic neurons projecting from the ventral pallidum to the lateral habenula, dopaminergic neurons in the ventral tegmental area, and proprioceptive neurons in the periphery. This flexible approach could help identify and test the function of novel genes affecting synaptic transmission, circuit activity, or morphology with a single viral injection.
引用
收藏
页数:23
相关论文
共 31 条
  • [1] Editing the Central Nervous System Through CRISPR/Cas9 Systems
    Cota-Coronado, Agustin
    Fabian Diaz-Martinez, Nestor
    Padilla-Camberos, Eduardo
    Emmanuel Diaz-Martinez, N.
    FRONTIERS IN MOLECULAR NEUROSCIENCE, 2019, 12
  • [2] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    R. N. Amirkhanov
    G. A. Stepanov
    Russian Journal of Bioorganic Chemistry, 2019, 45 : 431 - 437
  • [3] Systems of Delivery of CRISPR/Cas9 Ribonucleoprotein Complexes for Genome Editing
    Amirkhanov, R. N.
    Stepanov, G. A.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2019, 45 (06) : 431 - 437
  • [4] CRISPR/Cas9 Systems: The Next Generation Gene Targeted Editing Tool
    Guo S.
    Lv Y.
    Lin Y.
    Lin K.
    Peng P.
    Wu Y.
    Peng J.
    Song S.
    Li Z.
    Liu Q.
    Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2015, 85 (2) : 377 - 387
  • [5] T cell-specific inactivation of mouse CD2 by CRISPR/Cas9
    Beil-Wagner, Jane
    Doessinger, Georg
    Schober, Kilian
    vom Berg, Johannes
    Tresch, Achim
    Grandl, Martina
    Palle, Pushpalatha
    Mair, Florian
    Gerhard, Markus
    Becher, Burkhard
    Busch, Dirk H.
    Buch, Thorsten
    SCIENTIFIC REPORTS, 2016, 6
  • [6] Applying conventional and cell-type-specific CRISPR/Cas9 genome editing in legume plants
    Gao, Jin-Peng
    Su, Yangyang
    Jiang, Suyu
    Liang, Wenjie
    Lou, Zhijun
    Frugier, Florian
    Xu, Ping
    Murray, Jeremy D.
    ABIOTECH, 2024,
  • [7] Non-Viral CRISPR/Cas Gene Editing In Vitro and In Vivo Enabled by Synthetic Nanoparticle Co-Delivery of Cas9 mRNA and sgRNA
    Miller, Jason B.
    Zhang, Shuyuan
    Kos, Petra
    Xiong, Hu
    Zhou, Kejin
    Perelman, Sofya S.
    Zhu, Hao
    Siegwart, Daniel J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (04) : 1059 - 1063
  • [8] Optimized In Vitro CRISPR/Cas9 Gene Editing Tool in the West Nile Virus Mosquito Vector, Culex quinquefasciatus
    Torres, Tran Zen B.
    Prince, Brian C.
    Robison, Alexis
    Ruckert, Claudia
    INSECTS, 2022, 13 (09)
  • [9] Cell-Type-Specific CRISPR/Cas9 Delivery by Biomimetic Metal Organic Frameworks
    Alyami, Mram Z.
    Alsaiari, Shahad K.
    Li, Yanyan
    Qutub, Somayah S.
    Aleisa, Fajr A.
    Sougrat, Rachid
    Merzaban, Jasmeen S.
    Khashab, Niveen M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (04) : 1715 - 1720
  • [10] Strategies for single base gene editing in an immortalized human cell line by CRISPR/Cas9 technology
    Alda Corrado
    Romina Aceto
    Simona Miglietta
    Roberto Silvestri
    Irene Dell’Anno
    Irene Lepori
    Benedetta Ricci
    Cristina Romei
    Roberto Giovannoni
    Laura Poliseno
    Monica Evangelista
    Marianna Vitiello
    Monica Cipollini
    Rossella Elisei
    Stefano Landi
    Federica Gemignani
    3 Biotech, 2024, 14