Optimizing mesenchymal stem cell extracellular vesicles for chronic wound healing: Bioengineering, standardization, and safety

被引:7
|
作者
Shimizu, Yusuke [1 ]
Ntege, Edward Hosea [1 ]
Inoue, Yoshikazu [2 ]
Matsuura, Naoki [1 ]
Sunami, Hiroshi [3 ]
Sowa, Yoshihiro [4 ]
机构
[1] Univ Ryukyus, Grad Sch Med, Dept Plast & Reconstruct Surg, 207 Uehara, Nakagami, Okinawa 9030215, Japan
[2] Fujita Hlth Univ, Sch Med, Dept Plast & Reconstruct Surg, 1-98 Dengakugakubo, Toyoake, Aichi 4701192, Japan
[3] Univ Ryukyus, Ctr Adv Med Res, Sch Med, 207 Uehara, Nakagami, Okinawa 9030215, Japan
[4] Jichi Med Univ, Dept Plast Surg, 3311-1 Yakushiji, Shimotsuke, Tochigi 3290498, Japan
来源
REGENERATIVE THERAPY | 2024年 / 26卷
基金
英国科研创新办公室;
关键词
Bioengineering; Chronic wounds; CRISPR; Extracellular vesicles; Mesenchymal stem cells; Regenerative medicine; DIABETIC FOOT ULCERS; GENE-THERAPY; REGENERATIVE MEDICINE; INTERNATIONAL SOCIETY; EXOSOMES; CHALLENGES; FUTURE; ANGIOGENESIS; BIOGENESIS; MANAGEMENT;
D O I
10.1016/j.reth.2024.06.001
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Chronic wounds represent a significant global burden, afflicting millions with debilitating complications. Despite standard care, impaired healing persists due to factors like persistent inflammation and impaired tissue regeneration. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) offer an innovative regenerative medicine approach, delivering stem cell-derived therapeutic cargo in engineered nanoscale delivery systems. This review examines pioneering bioengineering strategies to engineer MSCEVs into precision nanotherapeutics for chronic wounds. Emerging technologies like CRISPR gene editing, microfluidic manufacturing, and biomimetic delivery systems are highlighted for their potential to enhance MSC-EV targeting, optimize therapeutic cargo enrichment, and ensure consistent clinical-grade production. However, key hurdles remain, including batch variability, rigorous safety assessment for potential tumorigenicity, immunogenicity, and biodistribution profiling. Crucially, collaborative frameworks harmonizing regulatory science with bioengineering and patient advocacy hold the key to expediting global clinical translation. By overcoming these challenges, engineered MSC-EVs could catalyze a new era of off-the-shelf regenerative therapies, restoring hope and healing for millions afflicted by non-healing wounds. (c) 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice nses/by-nc-nd/4.0/).
引用
收藏
页码:260 / 274
页数:15
相关论文
共 50 条
  • [31] Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges
    Ding, Jia-Yi
    Chen, Min-Jiang
    Wu, Ling-Feng
    Shu, Gao-Feng
    Fang, Shi-Ji
    Li, Zhao-Yu
    Chu, Xu-Ran
    Li, Xiao-Kun
    Wang, Zhou-Guang
    Ji, Jian-Song
    MILITARY MEDICAL RESEARCH, 2023, 10 (01)
  • [32] Mesenchymal Stem Cell-Derived Extracellular Vesicles as an Advanced Therapy for Chronic Wounds
    Bray, Eric R.
    Kirsner, Robert S.
    Badiavas, Evangelos V.
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2022, 14 (10):
  • [33] Emerging role of mesenchymal stem cell-derived extracellular vesicles in oral and craniomaxillofacial tissue regenerative medicine
    Liu, Meng
    Liu, Xin
    Su, Yuting
    Li, Shijie
    Chen, Yuan
    Liu, Anqi
    Guo, Jing
    Xuan, Kun
    Qiu, Xinyu
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [34] Mesenchymal stem cell-based therapy for burn wound healing
    Wang, Mingyao
    Xu, Xinxuan
    Lei, Xiongxin
    Tan, Jie
    Xie, Huiqi
    BURNS & TRAUMA, 2021, 9
  • [35] Versatility of mesenchymal stem cell-derived extracellular vesicles in tissue repair and regenerative applications
    Williams, Taylor
    Salmanian, Ghazaleh
    Burns, Morgan
    Maldonado, Vitali
    Smith, Emma
    Porter, Ryan M.
    Song, Young Hye
    Samsonraj, Rebekah Margaret
    BIOCHIMIE, 2023, 207 : 33 - 48
  • [36] Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles
    Pulido-Escribano, Victoria
    Torrecillas-Baena, Barbara
    Camacho-Cardenosa, Marta
    Dorado, Gabriel
    Galvez-Moreno, Maria Angeles
    Casado-Diaz, Antonio
    WORLD JOURNAL OF STEM CELLS, 2022, 14 (07): : 453 - 472
  • [37] Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
    Park, Kyong-Su
    Bandeira, Elga
    Shelke, Ganesh V.
    Lasser, Cecilia
    Lotvall, Jan
    STEM CELL RESEARCH & THERAPY, 2019, 10 (01)
  • [38] An Analysis of Mesenchymal Stem Cell-Derived Extracellular Vesicles for Preclinical Use
    Tieu, Alvin
    Lalu, Manoj M.
    Slobodian, Mitchell
    Gnyra, Catherine
    Fergusson, Dean A.
    Montroy, Joshua
    Burger, Dylan
    Stewart, Duncan J.
    Allan, David S.
    ACS NANO, 2020, 14 (08) : 9728 - 9743
  • [39] The role of mesenchymal stem cell-derived EVs in diabetic wound healing
    Jiang, Min
    Jiang, Xupin
    Li, Hongmei
    Zhang, Can
    Zhang, Ze
    Wu, Chao
    Zhang, Junhui
    Hu, Jiongyu
    Zhang, Jiaping
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [40] Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm
    Abbaszadeh, Hossein
    Ghorbani, Farzaneh
    Derakhshani, Mehdi
    Movassaghpour, Aliakbar
    Yousefi, Mehdi
    JOURNAL OF CELLULAR PHYSIOLOGY, 2020, 235 (02) : 706 - 717